Accurate needle guidance is essential for a number of magnetic resonance imaging (MRI)-guided percutaneous procedures, such as radiofrequency ablation (RFA) of metastatic liver tumors. A promising technology to obtain real-time tracking of the shape and tip of a needle is by using high-frequency (up to 20 kHz) fiber Bragg grating (FBG) sensors embedded in optical fibers, which are insensitive to external magnetic fields. We fabricated an MRI-compatible needle designed for percutaneous procedures with a series of FBG sensors which would be tracked in an image-guidance system, allowing to display the needle shape within a navigation image. A series of phantom experiments demonstrated needle tip tracking errors of 1.05 ± 0.08 mm for a needle deflection up to 16.82 mm on a ground-truth model and showed nearly similar accuracy to electromagnetic (EM) tracking (i.e., 0.89 ± 0.09 mm). We demonstrated feasibility of the FBG-based tracking system for MRI-guided interventions with differences under 1 mm between tracking systems. This study establishes the needle tracking accuracy of FBG needle tracking for image-guided procedures.

References

References
1.
Tsekos
,
N. V.
,
Khanicheh
,
A.
,
Christoforou
,
E.
, and
Mavroidis
,
C.
,
2007
, “
Magnetic Resonance–Compatible Robotic and Mechatronics Systems for Image-Guided Interventions and Rehabilitation: A Review Study
,”
Annu. Rev. Biomed. Eng.
,
9
(
1
), pp.
351
387
.
2.
Phee
,
S. J.
, and
Yang
,
K.
,
2010
, “
Interventional Navigation Systems for Treatment of Unresectable Liver Tumor
,”
Med. Biol. Eng. Comput.
,
48
(
2
), pp.
103
111
.
3.
Abolhassani
,
N.
,
Patil
,
R.
, and
Mehrdad
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.
4.
Kashyap
,
R.
,
2010
,
Fiber Bragg Gratings
,
Academic Press
, Chicago, IL.
5.
Park
,
Y. L.
,
Elayaperumal
,
S.
,
Daniel
,
B.
,
Ryu
,
S. C.
,
Shin
,
M.
, and
Savall
,
J.
,
2010
, “
Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions
,”
IEEE/ASME Trans. Mechatronics
,
15
(
6
), pp.
906
915
.
6.
Abayazid
,
M.
,
Kemp
,
M.
, and
Misra
,
S.
,
2013
, “
3D Flexible Needle Steering in Soft-Tissue Phantoms Using Fiber Bragg Grating Sensors
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
5843
5849
.
7.
Henken
,
K.
,
Dankelman
,
J.
,
Van Den Dobbelsteen
,
J.
,
Van Gerwen
,
D.
,
Cheng
,
L. K.
, and
van der Heiden
,
M. S.
,
2014
, “
Error Analysis of FBG-Based Shape Sensors for Medical Needle Tracking
,”
IEEE/ASME Trans. Mechatronics
,
19
(5), pp.
1523
1531
.
8.
Seifabadi
,
R.
,
Gomez
,
E. E.
,
Aalamifar
,
F.
,
Fichtinger
,
G.
, and
Iordachita
,
I.
,
2013
, “
Real-Time Tracking of a Bevel-Tip Needle With Varying Insertion Depth: Toward Teleoperated MRI-Guided Needle Steering
,”
IEEE/RSJ International Conference Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
469
476
.
9.
De Boor
,
C.
,
1978
,
A Practical Guide to Splines
, Vol.
27
,
Springer-Verlag
,
New York
.
10.
Mandal
,
K. K.
,
Parent
,
F.
,
Martel
,
S.
,
Kashyap
,
R.
, and
Kadoury
,
S.
,
2015
, “
Calibration of a Needle Tracking Device With Fiber Bragg Grating Sensors
,”
Proc. SPIE
,
9415
, p.
94150X
.
11.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J. C.
,
Pujol
,
S.
,
Bauer
,
C.
,
Jennings
,
D.
,
Fennessy
,
F. M.
,
Sonka
,
M.
,
Buatti
,
J.
,
Aylward
,
S. R.
,
Miller
,
J. V.
,
Pieper
,
S.
, and
Kikinis
R.
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.
You do not currently have access to this content.