Polyurethane shape memory polymer (SMP) foams have been developed for various embolic medical devices due to their unique properties in minimally invasive biomedical applications. These polyurethane materials can be stored in a secondary shape, from which they can recover their primary shape after exposure to an external stimulus, such as heat and water exposure. Tailored actuation temperatures of SMPs provide benefits for minimally invasive biomedical applications, but incur significant challenges for SMP-based medical device sterilization. Most sterilization methods require high temperatures or high humidity to effectively reduce the bioburden of the device, but the environment must be tightly controlled after device fabrication. Here, two probable sterilization methods (nontraditional ethylene oxide (ntEtO) gas sterilization and electron beam irradiation) are investigated for SMP medical devices. Thermal characterization of the sterilized foams indicated that ntEtO gas sterilization significantly decreased the glass transition temperature. Further material characterization was undertaken on the electron beam (ebeam) sterilized samples, which indicated minimal changes to the thermomechanical integrity of the bulk foam and to the device functionality.

References

References
1.
Ratner
,
B. D.
,
Hoffman
,
A. S.
,
Schoen
,
F. J.
, and
Lemons
,
J. E.
,
2004
,
Biomaterials Science: An Introduction To Materials in Medicine
,
Academic Press
, Cambridge, MA.
2.
Small
,
W.
, IV
,
Singhal
,
P.
,
Wilson
,
T. S.
, and
Maitland
,
D. J.
,
2010
, “
Biomedical Applications of Thermally Activated Shape Memory Polymers
,”
J. Mater. Chem.
,
20
(
17
), pp.
3356
3366
.
3.
Baer
,
G.
,
Wilson
,
T.
,
Matthews
,
D.
, and
Maitland
,
D.
,
2007
, “
Shape-Memory Behavior of Thermally Stimulated Polyurethane for Medical Applications
,”
J. Appl. Polym. Sci.
,
103
(
6
), pp.
3882
3892
.
4.
Lendlein
,
A.
, and
Kelch
,
S.
,
2002
, “
Shape-Memory Polymers
,”
Angew. Chem. Int. Ed.
,
41
(
12
), pp.
2034
2057
.
5.
Maitland
,
D. J.
,
Small
,
W.
,
Ortega
,
J. M.
,
Buckley
,
P. R.
,
Rodriguez
,
J.
,
Hartman
,
J.
, and
Wilson
,
T. S.
,
2007
, “
Prototype Laser-Activated Shape Memory Polymer Foam Device for Embolic Treatment of Aneurysms
,”
J. Biomed. Opt.
,
12
(
3
), p.
030504
.
6.
Boyle
,
A.
,
Weems
,
A.
,
Hasan
,
S.
,
Nash
,
L.
,
Monroe
,
M.
, and
Maitland
,
D.
,
2016
, “
Solvent Stimulated Actuation of Polyurethane-Based Shape Memory Polymer Foams Using Dimethyl Sulfoxide and Ethanol
,”
Smart Mater. Struct.
,
25
(
7
), p.
075014
.
7.
Singhal
,
P.
,
Boyle
,
A.
,
Brooks
,
M. L.
,
Infanger
,
S.
,
Letts
,
S.
,
Small
,
W.
,
Maitland
,
D. J.
, and
Wilson
,
T. S.
,
2013
, “
Controlling the Actuation Rate of Low-Density Shape-Memory Polymer Foams in Water
,”
Macromol. Chem. Phys.
,
214
(
11
), pp.
1204
1214
.
8.
Singhal
,
P.
,
Rodriguez
,
J. N.
,
Small
,
W.
,
Eagleston
,
S.
,
Van de Water
,
J.
,
Maitland
,
D. J.
, and
Wilson
,
T. S.
,
2012
, “
Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams
,”
J. Polym. Sci. Part B: Polym. Phys.
,
50
(
10
), pp.
724
737
.
9.
Hwang
,
W.
,
Singhal
,
P.
,
Miller
,
M. W.
, and
Maitland
,
D. J.
,
2013
, “
In Vitro Study of Transcatheter Delivery of a Shape Memory Polymer Foam Embolic Device for Treating Cerebral Aneurysms
,”
ASME J. Med. Devices
,
7
(
2
), p.
020932
.
10.
Boyle
,
A. J.
,
Landsman
,
T. L.
,
Wierzbicki
,
M. A.
,
Nash
,
L. D.
,
Hwang
,
W.
,
Miller
,
M. W.
,
Tuzun
,
E.
,
Hasan
,
S. M.
, and
Maitland
,
D. J.
,
2016
, “
In Vitro and In Vivo Evaluation of a Shape Memory Polymer Foam-Over-Wire Embolization Device Delivered in Saccular Aneurysm Models
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
104
(
7
), pp.
1407
1415
.
11.
Rodriguez
,
J. N.
,
Clubb
,
F. J.
,
Wilson
,
T. S.
,
Miller
,
M. W.
,
Fossum
,
T. W.
,
Hartman
,
J.
,
Tuzun
,
E.
,
Singhal
,
P.
, and
Maitland
,
D. J.
,
2014
, “
In Vivo Response to an Implanted Shape Memory Polyurethane Foam in a Porcine Aneurysm Model
,”
J. Biomed. Mater. Res. Part A
,
102
(
5
), pp.
1231
1242
.
12.
Horn
,
J.
,
Hwang
,
W.
,
Jessen
,
S. L.
,
Keller
,
B. K.
,
Miller
,
M. W.
,
Tuzun
,
E.
,
Hartman
,
J.
,
Clubb
,
F. J.
, and
Maitland
,
D. J.
,
2016
, “
Comparison of Shape Memory Polymer Foam Versus Bare Metal Coil Treatments in an In Vivo Porcine Sidewall Aneurysm Model
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
, epub.
13.
Small
,
W.
, IV
,
Wilson
,
T. S.
,
Benett
,
W. J.
,
Loge
,
J. M.
, and
Maitland
,
D. J.
,
2005
, “
Laser-Activated Shape Memory Polymer Intravascular Thrombectomy Device
,”
Opt. Express
,
13
(
20
), pp.
8204
8213
.
14.
Kotzar
,
G.
,
Freas
,
M.
,
Abel
,
P.
,
Fleischman
,
A.
,
Roy
,
S.
,
Zorman
,
C.
,
Moran
,
J. M.
, and
Melzak
,
J.
,
2002
, “
Evaluation of MEMS Materials of Construction for Implantable Medical Devices
,”
Biomaterials
,
23
(
13
), pp.
2737
2750
.
15.
Rutala
,
W. A.
,
Weber
,
D. J.
, and
the Healthcare Infection Control Practices Advisory Committee (HICPAC)
,
2008
, “
Guideline for Disinfection and Sterilization in Healthcare Facilities
,” Centers for Disease Control, Atlanta, GA.
16.
ISO
,
2009
, “
Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing Within a Risk Management Process
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 10993-1:2009
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm348890.pdf.
17.
ISO
,
2013
, “
Sterilization of Health Care Products—Radiation—Part 2: Establishing the Sterilization Dose
,” International Organization for Standardization, Washington, DC, Standard No.
ISO 11137-2:2012
https://www.iso.org/standard/62442.html?browse=tc.
18.
Wilson
,
T.
,
Bearinger
,
J.
,
Herberg
,
J.
,
Marion
,
J.
,
Wright
,
W.
,
Evans
,
C.
, and
Maitland
,
D.
,
2007
, “
Shape Memory Polymers Based on Uniform Aliphatic Urethane Networks
,”
J. Appl. Polym. Sci.
,
106
(
1
), pp.
540
551
.
19.
Mendes
,
G. C.
,
Brandao
,
T. R.
, and
Silva
,
C. L.
,
2007
, “
Ethylene Oxide Sterilization of Medical Devices: A Review
,”
Am. J. Infect. Control
,
35
(
9
), pp.
574
581
.
20.
Rutala
,
W. A.
, and
Weber
,
D. J.
,
2015
, “
ERCP Scopes: What Can We Do to Prevent Infections?
,”
Infect. Control Hosp. Epidemiol.
,
36
(
6
), pp.
643
648
.
21.
Premnath
,
V.
,
Harris
,
W. H.
,
Jasty
,
M.
, and
Merrill
,
E. W.
,
1996
, “
Gamma Sterilization of UHMWPE Articular Implants: An Analysis of the Oxidation Problem
,”
Biomaterials
,
17
(
18
), pp.
1741
1753
.
22.
De Nardo
,
L.
,
Alberti
,
R.
,
Cigada
,
A.
,
Yahia
,
L. H.
,
Tanzi
,
M. C.
, and
Farè
,
S.
,
2009
, “
Shape Memory Polymer Foams for Cerebral Aneurysm Reparation: Effects of Plasma Sterilization on Physical Properties and Cytocompatibility
,”
Acta Biomater.
,
5
(
5
), pp.
1508
1518
.
23.
Lerouge
,
S.
,
Wertheimer
,
M. R.
, and
Yahia
,
L. H.
,
2001
, “
Plasma Sterilization: A Review of Parameters, Mechanisms, and Limitations
,”
Plasmas Polym.
,
6
(
3
), pp.
175
188
.
24.
Allen
,
J. T.
,
Calhoun
,
R.
,
Helm
,
J.
,
Kruger
,
S.
,
Lee
,
C.
,
Mendonsa
,
R.
,
Meyer
,
S.
,
Pageau
,
G.
,
Shaffer
,
H.
,
Whitham
,
K.
,
Williams
,
C. B.
, and
Farrell
,
J. P.
,
1995
, “
A Fully Integrated 10 MeV Electron Beam Sterilization System
,”
Radiat. Phys. Chem.
,
46
(
4–6
), pp.
457
460
.
25.
Ecker
,
M.
,
Danda
,
V.
,
Shoffstall
,
A. J.
,
Mahmood
,
S. F.
,
Joshi-Imre
,
A.
,
Frewin
,
C. L.
,
Ware
,
T. H.
,
Capadona
,
J. R.
,
Pancrazio
,
J. J.
, and
Voit
,
W. E.
,
2016
, “
Sterilization of Thiol-ene/Acrylate Based Shape Memory Polymers for Biomedical Applications
,”
Macromol. Mater. Eng.
,
302
(
2
), pp.
1439
2054
.
26.
Hasan
,
S. M.
,
Harman
,
G.
,
Zhou
,
F.
,
Raymond
,
J. E.
,
Gustafson
,
T. P.
,
Wilson
,
T. S.
, and
Maitland
,
D. J.
,
2016
, “
Tungsten-Loaded SMP Foam Nanocomposites With Inherent Radiopacity and Tunable Thermos-Mechanical Properties
,”
Polym. Adv. Technol.
,
27
(
2
), pp.
195
203
.
27.
Hasan
,
S. M.
,
Thompson
,
R. S.
,
Emery
,
H.
,
Nathan
,
A. L.
,
Weems
,
A. C.
,
Zhou
,
F.
,
Wilson
,
T. S.
, and
Maitland
,
D. J.
,
2016
, “
Modification of Shape Memory Polymer Foams Using Tungsten, Aluminum Oxide, and Silicon Dioxide Nanoparticles
,”
RSC Adv.
,
6
(
2
), pp.
918
927
.
28.
ASTM
,
2014
, “
Standard Test Method for Tensile Properties of Plastics
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D638-14
https://www.astm.org/Standards/D638.htm.
29.
Ping
,
Z. H.
,
Nguyen
,
Q. T.
,
Chen
,
S. M.
,
Zhou
,
J. Q.
, and
Ding
,
Y. D.
,
2001
, “
States of Water in Different Hydrophilic Polymers—DSC and FTIR Studies
,”
Polymer
,
42
(
20
), pp.
8461
8467
.
30.
Qi
,
H. J.
, and
Boyce
,
M. C.
,
2005
, “
Stress–Strain Behavior of Thermoplastic Polyurethanes
,”
Mech. Mater.
,
37
(
8
), pp.
817
839
.
31.
Coates
,
J.
,
2000
, “
Interpretation of Infrared Spectra, a Practical Approach
,”
Encyclopedia of Analytical Chemistry
,
Wiley
, Hoboken, NJ.
32.
Silindir
,
M.
, and
Ozer
,
A.
,
2009
, “
Sterilization Methods and the Comparison of e-Beam Sterilization With Gamma Radiation Sterilization
,”
FABAD J. Pharm. Sci.
,
34
(
34
), pp.
43
53
.https://www.researchgate.net/publication/235764334_Sterilization_methods_and_the_comparison_of_E-Beam_sterilization_with_gamma_radiation_sterilization
You do not currently have access to this content.