Drilling through bone is a common task during otologic procedures. Currently, the drilling tool is manually held by the surgeon. A robotically assisted surgical drill with force sensing for otologic surgery was developed, and the feasibility of using the da Vinci research kit to hold the drill and provide force feedback for temporal bone drilling was demonstrated in this paper. To accomplish intuitive motion and force feedback, the kinematics and coupling matrices of the slave manipulator were analyzed and a suitable mapping was implemented. Several experiments were completed including trajectory tracking, drill instrument calibration, and temporal bone drilling with force feedback. The results showed that good trajectory tracking performance and minor calibration errors were achieved. In addition, temporal bone drilling could be successfully performed and force feedback from the drill instrument could be felt at the master manipulator. In the future, it may be feasible to use master–slave surgical robotic systems for temporal bone drilling.

References

References
1.
Díaz
,
I.
,
Gil
,
J. J.
, and
Louredo
,
M.
,
2013
, “
Bone Drilling Methodology and Tool Based on Position Measurements
,”
Comput. Methods Prog. Biomed.
,
112
(
2
), pp.
284
292
.
2.
Assadi
,
M. Z.
,
Du
,
X.
,
Dalton
,
J.
,
Henshaw
,
S.
,
Coulson
,
C. J.
,
Reid
,
A. P.
,
Proops
,
D. W.
, and
Brett
,
P. N.
,
2013
, “
Comparison on Intracochlear Disturbances Between Drilling a Manual and Robotic Cochleostomy
,”
Proc. Inst. Mech. Eng. H
,
227
(
9
), pp.
1002
1008
.
3.
Allotta
,
B.
,
Giacalone
,
G.
, and
Rinaldi
,
L.
,
1997
, “
A Hand-Held Drilling Tool for Orthopedic Surgery
,”
IEEE/ASME Trans. Mechatronics
,
2
(
4
), pp.
218
229
.
4.
Kaburlasos
,
V. G.
, and
Petridis
,
V.
,
2000
, “
Fuzzy Lattice Neurocomputing (FLN) Models
,”
Neural Networks
,
13
(
10
), pp.
1145
1170
.
5.
Allotta
,
B.
,
Belmonte
,
F.
,
Bosio
,
L.
, and
Dario
,
P.
,
1996
, “
Study on a Mechatronic Tool for Drilling in the Osteosynthesis of Long Bones: Tool/Bone Interaction, Modeling and Experiments
,”
Mechatronics
,
6
(
4
), pp.
447
459
.
6.
Ong
,
F. R.
, and
Bouazza-Marouf
,
K.
,
1998
, “
Drilling of Bone: A Robust Automatic Method for the Detection of Drill Bit Break-Through
,”
Proc. Inst. Mech. Eng. H
,
212
(
3
), pp.
209
221
.
7.
Brett
,
P. N.
,
Baker
,
D. A.
,
Taylor
,
R.
, and
Griffiths
,
M. V.
,
2004
, “
Controlling the Penetration of Flexible Bone Tissue Using the Stapedotomy Microdrill
,”
Proc. Inst. Mech. Eng., I
,
218
(
5
), pp.
343
351
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.881.6848&rep=rep1&type=pdf.
8.
Lee
,
W. Y.
,
Shih
,
C. L.
, and
Lee
,
S. T.
,
2004
, “
Force Control and Breakthrough Detection of a Bone-Drilling System
,”
IEEE ASME Trans. Mechatronics
,
9
(
1
), pp.
20
29
.
9.
Lee
,
W. Y.
, and
Shih
,
C. L.
,
2006
, “
Control and Breakthrough Detection of a Three Axis Robotic Bone Drilling System
,”
Mechatronics
,
16
(
2
), pp.
73
84
.
10.
Wayne
,
A.
,
2014
, “
Depth Controllable and Measurable Medical Driver Devices and Methods of Use
,” Smart Medical Devices, Inc., Las Vegas, NV, U.S. Patent No.
US20140371752A1
http://www.google.co.in/patents/US8894654.
11.
Taylor
,
R.
,
Du
,
X.
,
Proops
,
D.
,
Reid
,
A.
,
Coulson
,
C.
, and
Brett
,
P. N.
,
2010
, “
A Sensory Guided Surgical Micro-Drill
,”
Proc. Inst. Mech. Eng. C
,
224
(
7
), pp.
1531
1537
.
12.
Balachandran
,
R.
,
Mitchell
,
J. E.
,
Blachon
,
G.
,
Noble
,
J. H.
,
Dawant
,
B. M.
,
Fitzpatrick
,
J. M.
, and
Labadie
,
R. F.
,
2010
, “
Percutaneous Cochlear Implant Drilling Via Customized Frames: An In Vitro Study
,”
Otolaryngol. Head Neck Surg.
,
142
(
3
), pp.
421
426
.
13.
Labadie
,
R. F.
,
Balachandran
,
R.
,
Mitchell
,
J. E.
,
Noble
,
J. F.
,
Majdani
,
O.
,
Haynes
,
D. S.
,
Benoit
,
M. L.
,
Dawant
,
B. M.
, and
Fitzpatrick
,
J. M.
,
2010
, “
Clinical Validation Study of Percutaneous Cochlear Access Using Patient Customized Microstereotactic Frames
,”
Otol. Neurotol.
,
31
(
1
), pp.
94
99
.
14.
McRackan
,
T. R.
,
Balachandran
,
R.
,
Blachon
,
G. S.
,
Mitchell
,
J. E.
,
Noble
,
J. H.
,
Wright
,
C. G.
,
Fitzpatrick
,
J. M.
,
Dawant
,
B. M.
, and
Labadie
,
R. F.
,
2013
, “
Validation of Minimally Invasive, Image-Guided Cochlear Implantation Using Advanced Bionics, Cochlear, and Medel Electrodes in a Cadaver Model
,”
Int. J. Comput. Assisted Radiol. Surg.
,
8
(
6
), pp.
989
995
.
15.
Warren
,
F. M.
,
Balachandran
,
R.
,
Fitzpatrick
,
J. M.
, and
Labadie
,
R. F.
,
2007
, “
Percutaneous Cochlear Access Using Bone-Mounted, Customized Drill Guides: Demonstration of Concept In Vitro
,”
Otol. Neurotol.
,
28
(
3
), pp.
325
329
.
16.
Kratchman
,
L. B.
,
Blachon
,
G. S.
,
Withrow
,
T. J.
,
Balachandran
,
R.
, and
Labadie
,
R. F.
,
2011
, “
Design of a Bone-Attached Parallel Robot for Percutaneous Cochlear Implantation
,”
IEEE Trans. Biomed. Eng.
,
58
(
10
), pp.
2904
2910
.
17.
Kratchman
,
L. B.
, and
Fitzpatrick
,
J. M.
,
2013
, “
Robotically-Adjustable Microstereotactic Frames for Image-Guided Neurosurgery
,”
Proc. SPIE
,
8671
, p.
86711U
.
18.
Labadie
,
R. F.
,
Balachandran
,
R.
,
Noble
,
J. H.
,
Blachon
,
G. S.
,
Mitchell
,
I. E.
,
Reda
,
F. A.
,
Dawant
,
B. M.
, and
Fitzpatrick
,
I. M.
,
2014
, “
Minimally-Invasive Image-Guided Cochlear Implantation Surgery: First Report of Clinical Implementation
,”
Laryngoscope
,
124
(
8
), pp.
1915
1922
.
19.
Labadie
,
R. F.
,
Choudhury
,
P.
,
Cetinkaya
,
E.
,
Balachandran
,
R.
,
Haynes
,
D. S.
,
Fenlon
,
M. R.
,
Jusczyzck
,
A. S.
, and
Fitzpatrick
,
I. M.
,
2005
, “
Minimally Invasive, Image-Guided, Facial-Recess Approach to the Middle Ear: Demonstration of the Concept of Percutaneous Cochlear Access In Vitro
,”
Otol. Neurotol.
,
26
(
4
), pp.
557
562
.https://www.ncbi.nlm.nih.gov/pubmed/16015146
20.
Louredo
,
M.
,
Díaz
,
I.
, and
Gil
,
J. J.
,
2012
, “
DRIBON: A Mechatronic Bone Drilling Tool
,”
Mechatronics
,
22
(
8
), pp.
1060
1066
.
21.
Dillon
,
N. P.
,
Mitchell
,
J. E.
,
Zuniga
,
M. G.
,
Webster
,
R. J.
, and
Labadie
,
R. F.
,
2016
, “
Design and Thermal Testing of an Automatic Drill Guide for Less Invasive Cochlear Implantation
,”
ASME J. Med. Devices
,
10
(
2
), p.
020923
.
22.
Bell
,
B.
,
Stieger
,
C.
,
Gerber
,
N.
,
Arnold
,
A.
,
Nauer
,
C.
,
Hamacher
,
V.
,
Kompis
,
M.
,
Nolte
,
L.
,
Caversaccio
,
M.
, and
Weber
,
S.
,
2012
, “
A Self-Developed and Constructed Robot for Minimally Invasive Cochlear Implantation
,”
Acta Otolaryngol.
,
132
(
4
), pp.
355
360
.
23.
Dillon
,
N. P.
,
Balachandranb
,
R.
,
Dit Falissec
,
A. M.
,
Wanna
,
G. B.
,
Labadie
,
R. F.
,
Withrow
,
T. J.
,
Fitzpatrick
,
J. M.
, and
Webster
,
R. J.
, III
,
2014
, “
Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery
,”
Proc. SPIE
,
9036
, p.
903614
.
24.
Danilchenko
,
A.
,
Toennies
,
J. L.
,
Balachandran
,
R.
,
Baron
,
S.
,
Munske
,
B.
,
Webster
,
R. J.
, III
, and
Labadie
,
R. F.
,
2011
, “
Robotic Mastoidectomy
,”
Otol. Neurotol.
,
32
(
1
), pp.
11
16
.
25.
Nguyen
,
Y.
,
Miroir
,
M.
,
Kazmitcheff
,
G.
,
Ferrary
,
E.
,
Sterkers
,
O.
, and
Bozorg
,
A. G.
,
2012
, “
From Conception to Application of a Tele-Operated Assistance Robot for Middle Ear Surgery
,”
Surg. Innovation
,
19
(
3
), pp.
241
251
.
26.
Dillon
,
N. P.
,
Balachandran
,
R.
,
Fitzpatrick
,
J. M.
,
Michael
,
S. A.
,
Robert
,
L. F.
,
George
,
W. B.
,
Thomas
,
W. J.
, and
Robert
,
W. J.
,
2015
, “
A Compact, Bone-Attached Robot for Mastoidectomy
,”
ASME J. Med. Devices
,
9
(
3
), p.
031003
.
27.
Payne
,
C. J.
, and
Yang
,
G. Z.
,
2014
, “
Hand-Held Medical Robots
,”
Ann. Biomed. Eng.
,
42
(
8
), pp.
1594
1605
.
28.
Liu
,
W. P.
,
Azizian
,
M.
,
Sorger
,
J.
,
Taylor
,
R. H.
,
Reilly
,
B. K.
,
Cleary
,
K.
, and
Preciado
,
D.
,
2014
, “
Cadaveric Feasibility Study of da Vinci Si-Assisted Cochlear Implant With Augmented Visual Navigation for Otologic Surgery
,”
Otolaryngol. Head Neck Surg.
,
140
(
3
), pp.
208
214
.
29.
Vitiello
,
V.
,
Lee
,
S. L.
,
Cundy
,
T. P.
, and
Yang
,
G. Z.
,
2013
, “
Emerging Robotic Platforms for Minimally Invasive Surgery
,”
IEEE Rev. Biomed. Eng.
,
6
, pp.
111
126
.
30.
MacLachlan
,
R. A.
,
Becker
,
B. C.
,
Tabarés
,
J. C.
,
Podnar
,
G. W.
,
Lobes
,
L. A.
, Jr.
, and
Riviere
,
C. N.
,
2012
, “
Micron: An Actively Stabilized Handheld Tool for Microsurgery
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
195
212
.
31.
Kazanzides
,
P.
,
Chen
,
Z.
,
Deguet
,
A.
,
Fischer
,
G. S.
,
Taylor
,
R. H.
, and
Dimaio
,
S. P.
,
2014
, “
An Open-Source Research Kit for the da Vinci® Surgical System
,”
IEEE International Conference on Robotics and Automation
(ICRA)
, Hong Kong, China, May 31–June 7, pp.
6434
6439
.
32.
Chen
,
Z.
,
Deguet
,
A.
,
Taylor
,
R.
,
DiMaio
,
S.
,
Fischer
,
G.
, and
Kazanzides
,
P.
,
2013
, “
An Open-Source Hardware and Software Platform for Telesurgical Robotics Research
,”
Workshop on Systems and Architecture for Computer Assisted Interventions
(
MICCAI'13
), Nagoya, Japan, Sept. 22–26 pp.
1
10
http://www.midasjournal.org/browse/publication/892.
You do not currently have access to this content.