The purpose of this study was to evaluate the suitability of a novel radio-frequency identification (RFID)-based tracking system for intraoperative magnetic resonance imaging (MRI). A RFID tracking system was modified to fulfill MRI-compatibility and tested according to ASTM and NEMA. The influence of the RFID tracking system on MRI was analyzed in a phantom study using a half-Fourier acquisition single-shot turbospin echo (HASTE) and true fast imaging with steady-state precession sequence (TrueFISP) sequence. The RFID antenna was gradually moved closer to the isocenter of the MR scanner from 90 to 210 cm to investigate the influence of the distance. Furthermore, the RF was gradually changed between 865 and 869 MHz for a distance of 90 cm, 150 cm, and 210 cm to the isocenter of the magnet to investigate the influence of the frequency. The specific spatial resolution was measured with and without a permanent line of sight (LOS). After the modification of the reader, no significant change of the signal-to-noise ratio (SNR) could be observed with increasing distance of the RFID tracking system to the isocenter of the MR scanner. Also, different radio frequencies of the RFID tracking system did not influence the SNR of the MR-images significantly. The specific spatial resolution deviated on average by 8.97 ± 7.33 mm with LOS and 11.23 ± 12.03 mm without LOS from the reference system. The RFID tracking system had no relevant influence on the MR-image quality. RFID tracking solved the LOS problem. However, the spatial accuracy of the RFID tracking system has to be improved for medical usage.

References

1.
Phee
,
S. J.
, and
Yang
,
K.
,
2010
, “
Interventional Navigation Systems for Treatment of Unresectable Liver Tumor
,”
Med. Biol. Eng. Comput.
,
48
(
2
), pp.
103
111
.
2.
Hong
,
J.
,
Nakashima
,
H.
,
Konishi
,
K.
,
Ieiri
,
S.
,
Tanoue
,
K.
,
Nakamuta
,
M.
, and
Hashizume
,
M.
,
2006
, “
Interventional Navigation for Abdominal Therapy Based on Simultaneous Use of MRI and Ultrasound
,”
Med. Biol. Eng. Comput.
,
44
(
12
), pp.
1127
1134
.
3.
Kariniemi
,
J.
,
Sequeiros
,
R. B.
,
Ojala
,
R.
, and
Tervonen
,
O.
,
2009
, “
MRI-Guided Percutaneous Nephrostomy: A Feasibility Study
,”
Eur. Radiol.
,
19
(
5
), pp.
1296
1301
.
4.
Ojala
,
R.
,
Kerimaa
,
P.
,
Lakovaara
,
M.
,
Hyvönen
,
P.
,
Lehenkari
,
P.
,
Tervonen
,
O.
, and
Blanco-Sequeiros
,
R.
,
2011
, “
MRI-Guided Percutaneous Retrograde Drilling of Osteochondritis Dissecans of the Knee
,”
Skeletal Radiol.
,
40
(
6
), pp.
765
770
.
5.
Azimi
,
E.
,
Doswell
,
J.
, and
Kazanzides
,
P.
,
2012
, “
Augmented Reality Goggles With an Integrated Tracking System for Navigation in Neurosurgery
,” IEEE Virtual Reality Workshops (
VRW
), Costa Mesa, CA, Mar. 4–8, pp.
123
124
.
6.
Sutherland
,
G. R.
,
Latour
,
I.
, and
Greer
,
A. D.
,
2008
, “
Integrating an Image-Guided Robot With Intraoperative MRI
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
3
), pp.
59
65
.
7.
Teichgräber
,
U. K.-M.
,
Streitparth
,
F.
, and
Güttler
,
F.
,
2012
, “
High-Field Open MRI-Guided Interventions
,”
Interventional Magnetic Resonance Imaging
,
T.
Kahn
and
H.
Busse
, eds.,
Springer
,
Berlin
, pp.
145
157
.
8.
Rump
,
J. C.
,
Jonczyk
,
M.
,
Seebauer
,
C. J.
,
Streitparth
,
F.
,
Güttler
,
F. V.
,
Walter
,
T.
,
Hamm
,
B.
, and
Teichgräber
,
U. K. M.
,
2011
, “
The Impact of Imaging Speed of MR-Guided Punctures and Interventions in Static Organs—A Phantom Study
,”
Eur. J. Radiol.
,
80
(
3
), pp.
856
860
.
9.
Güttler
,
F.
,
Krauß
,
P.
,
Guntermann
,
J.
,
Heinrich
,
A.
, and
Teichgräber
,
U.
,
2012
, “
Introduction of an Open Source Middleware for Automatic FOV Adjustment in Interactive MRI According to a Medical Tracking-System
,”
Biomed. Eng./Biomed. Tech.
,
57
(
SI-1 Track-C
), p.
1046
.
10.
Metson
,
R.
,
Gliklich
,
R. E.
, and
Cosenza
,
M.
,
1998
, “
A Comparison of Image Guidance Systems for Sinus Surgery
,”
Laryngoscope
,
108
(
8
), pp.
1164
1170
.
11.
Rotenberg
,
D.
,
Chiew
,
M.
,
Ranieri
,
S.
,
Tam
,
F.
,
Chopra
,
R.
, and
Graham
,
S. J.
,
2013
, “
Real-Time Correction by Optical Tracking With Integrated Geometric Distortion Correction for Reducing Motion Artifacts in Functional MRI
,”
Magn. Reson. Med.
,
69
(
3
), pp.
734
748
.
12.
Korduba
,
L. A.
,
Grabowsky
,
M. B. M.
,
Uhl
,
R. L.
,
Hella
,
M. M.
, and
Ledet
,
E. H.
,
2013
, “
Radio Frequency Identification as a Testbed for Integration of Low Frequency Radio Frequency Sensors Into Orthopedic Implants
,”
ASME J. Med. Devices
,
7
(
1
), p.
011008
.
13.
Wiles
,
A. D.
,
Thompson
,
D. G.
, and
Frantz
,
D. D.
,
2004
, “
Accuracy Assessment and Interpretation for Optical Tracking Systems
,”
Medical Imaging 2004
, pp.
421
432
.
14.
Finkenzeller
,
K.
,
2010
,
RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication
,
Wiley
,
Chichester, UK
.
15.
Steffen
,
T.
,
Luechinger
,
R.
,
Wildermuth
,
S.
,
Kern
,
C.
,
Fretz
,
C.
,
Lange
,
J.
, and
Hetzer
,
F. H.
,
2010
, “
Safety and Reliability of Radio Frequency Identification Devices in Magnetic Resonance Imaging and Computed Tomography
,”
Patient Saf. Surg.
,
4
(
2
), pp.
1
9
.
16.
El-Nahas
,
A. R.
,
Abou El-Ghar
,
M. E.
,
Refae
,
H. F.
,
Gad
,
H. M.
, and
El-Diasty
,
T. A.
,
2007
, “
Magnetic Resonance Imaging in the Evaluation of Pelvi-Ureteric Junction Obstruction: An All-in-One Approach
,”
BJU Int.
,
99
(
3
), pp.
641
645
.
17.
Lamberg
,
J.
,
2005
, “
Magnetic Resonance Imaging and VeriChip RFID Human Implant at 1.5 Tesla
,” University of Minnesota Twin Cities, Hauppauge, NY, accessed Nov. 1, 2010, http://www.rfidjournal.com/whitepapers/7/3
18.
Periyasamy
,
M.
, and
Dhanasekaran
,
R.
,
2014
, “
Assessment of Safety and Interference Issues of Radio Frequency Identification Devices in 0.3 Tesla Magnetic Resonance Imaging and Computed Tomography
,”
Sci. World J.
,
2014
, p.
735762
.
19.
Titterington
,
B.
, and
Shellock
,
F. G.
,
2013
, “
Evaluation of MRI Issues for an Access Port With a Radiofrequency Identification (RFID) Tag
,”
Magn. Reson. Imaging
,
31
(
8
), pp.
1439
1444
.
20.
ASTM
,
2013
, “
Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM F2503-13
.https://www.astm.org/Standards/F2503.htm
21.
NEMA MS1
,
2008
, “
Determination of Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging
,” National Electrical Manufacturers Association, Arlington, VA.
22.
Streitparth
,
F.
,
Walter
,
T.
,
Wonneberger
,
U.
,
Chopra
,
S.
,
Wichlas
,
F.
,
Wagner
,
M.
,
Hermann
,
K.
,
Hamm
,
B.
, and
Teichgräber
,
U.
,
2010
, “
Image-Guided Spinal Injection Procedures in Open High-Field MRI With Vertical Field Orientation: Feasibility and Technical Features
,”
Eur. Radiol.
,
20
(
2
), pp.
395
403
.
23.
de Bucourt
,
M.
,
Streitparth
,
F.
,
Collettini
,
F.
,
Guettler
,
F.
,
Rathke
,
H.
,
Lorenz
,
B.
,
Rump
,
J.
,
Hamm
,
B.
, and
Teichgräber
,
U. K.
,
2012
, “
Minimally Invasive Magnetic Resonance Imaging-Guided Free-Hand Aspiration of Symptomatic Nerve Route Compressing Lumbosacral Cysts Using a 1.0-Tesla Open Magnetic Resonance Imaging System
,”
Cardiovasc. Interventional Radiol.
,
35
(
1
), pp.
154
160
.
24.
Heinrich
,
A.
,
Teichgräber
,
U. K.
, and
Güttler
,
F. V.
,
2015
, “
Measurement of Susceptibility Artifacts With Histogram-Based Reference Value on Magnetic Resonance Images According to Standard ASTM F2119
,”
Biomed. Eng./Biomed. Tech.
,
60
(
6
), pp.
541
549
.
25.
Pinkernelle
,
J. G.
,
Streitparth
,
F.
,
Rump
,
J.
, and
Ber
,
U. T.
,
2010
, “
Adaptation of a Wireless PC Mouse for Modification of GUI During Intervention in an Open Highfield MRI at 1.0T
,”
Rofo
,
182
(
20013633
), pp.
348
352
.
26.
Kägebein
,
U.
,
Godenschweger
,
F.
,
Stucht
,
D.
,
Danishad
,
K. A.
,
Zaitsev
,
M.
, and
Speck
,
O.
,
2013
, “
Entwicklung Einer Echtzeitnadelführung Unter Nutzung des Optischen Moire Phase Trackingsystems am 3 T Wide-Bore System
,” CURAC, Innsbruck, Austria, Nov. 28–30, pp.
22
25
.
27.
Zaitsev
,
M.
,
Dold
,
C.
,
Sakas
,
G.
,
Hennig
,
J.
, and
Speck
,
O.
,
2006
, “
Magnetic Resonance Imaging of Freely Moving Objects: Prospective Real-Time Motion Correction Using an External Optical Motion Tracking System
,”
Neuroimage
,
31
(
3
), pp.
1038
1050
.
28.
Sequeiros
,
R. B.
,
Klemola
,
R.
,
Ojala
,
R.
,
Jyrkinen
,
L.
,
Lappi-Blanco
,
E.
,
Soini
,
Y.
, and
Tervonen
,
O.
,
2002
, “
MRI-Guided Trephine Biopsy and Fine-Needle Aspiration in the Diagnosis of Bone Lesions in Low-Field (0.23 T) MRI System Using Optical Instrument Tracking
,”
Eur. Radiol.
,
12
(
4
), pp.
830
835
.
29.
NDI Medical
,
2016
, “
Medical Polaris Optical Tracking Systems
,” NDI International, Waterloo, Canada, accessed June 14, 2016, http://www.ndigital.com/medical/products/polaris-family
30.
Wille
,
A.
,
Broll
,
M.
, and
Winter
,
S.
,
2011
, “
Phase Difference Based RFID Navigation for Medical Applications
,”
IEEE International Conference on RFID
, Orlando, FL, Apr. 12–14, pp.
98
105
.
You do not currently have access to this content.