To facilitate the design of the serialized implants and to satisfy the requirements of the population, a novel method is put forward for constructing an average bone model (ABM) with semantic parameters as a template. First, the ABM is created from the existing bone models, among which each bone has an equal contribution to the ABM. Second, combined with medical semantics, some characteristic points and semantic parameters are defined on the ABM, and then, parameter values for each bone can be automatically obtained through its registration and deformation to the ABM. Finally, an average bone template (ABT) is constructed by configuring the semantic parameters and by building the constraints between parameters. Taking 100 femur models as samples, we construct the ABT, and the template can be easily extended to generate a new average template through the given average equation.

References

References
1.
Ogden
,
C. L.
,
Fryar
,
C. D.
,
Carroll
,
M. D.
, and
Flegal
,
K. M.
,
2004
, “
Mean Body Weight, Height, and Body Mass Index: United States
,”
Adv. Data
,
347
, pp.
1
17
.https://www.researchgate.net/profile/Katherine_Flegal/publication/8183212_Mean_Body_Weight_Height_and_Body_Mass_Index_United_States_1960-2002/links/57e17f0508aed96fbbb06e6f.pdf
2.
Harrysson
,
O. L.
,
Hosni
,
Y. A.
, and
Nayfeh
,
J. F.
,
2007
, “
Custom-Designed Orthopedic Implants Evaluated Using Finite Element Analysis of Patient-Specific Computed Tomography Data: Femoral-Component Case Study
,”
BMC Musculoskeletal Disord.
,
8
(
1
), p.
91
.
3.
Manić
,
M.
,
Stamenković
,
Z.
,
Mitković
,
M.
,
Stojković
,
M.
, and
Shephard
,
D. E.
,
2015
, “
Design of 3D Model of Customized Anatomically Adjusted Implants
,”
Facta Univ., Ser.: Mech. Eng.
,
13
(
3
), pp.
269
282
.http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/view/1153
4.
Neto
,
R.
,
Marques
,
T.
,
Marta
,
M.
,
Leal
,
N.
,
Couto
,
M.
, and
Machado
,
M.
,
2015
, “
Digital-Based Engineering Tools for Tailored Design of Medical Implants
,”
New Trends in Mechanism and Machine Science
,
Springer
,
Cham, Switzerland
, pp.
733
741
.
5.
Arnone
,
J. C.
,
El-Gizawy
,
A. S.
,
Crist
,
B. D.
,
Della Rocca
,
G. J.
, and
Ward
,
C. V.
,
2013
, “
Computer-Aided Engineering Approach for Parametric Investigation of Locked Plating Systems Design
,”
ASME J. Med. Dev.
,
7
(
2
), p.
021001
.
6.
Koen
,
E.
, and
Vinod
,
K.
,
2012
, “
Finding the Best Fit: Anatomical Data Mining Can Improve the Results for Standard Implant Design
,”
Orthop. Design Tech.
,
2012
(3), pp. 56–59.http://www.odtmag.com/contents/view_features/2012-05-18/finding-the-best-fit/
7.
Kozic
,
N.
,
Weber
,
S.
,
Büchler
,
P.
,
Lutz
,
C.
,
Reimers
,
N.
,
Ballester
,
M. A. G.
, and
Reyes
,
M.
,
2010
, “
Optimisation of Orthopaedic Implant Design Using Statistical Shape Space Analysis Based on Level Sets
,”
Med. Images Anal.
,
14
(
3
), pp.
265
275
.
8.
Arnone
,
J. C.
,
Ward
,
C. V.
,
Della Rocca
,
G. J.
,
Crist
,
B. D.
, and
El-Gizawy
,
A. S.
,
2010
, “
Simulation-Based Design of Orthopedic Trauma Implants
,”
ASME
Paper No. IMECE2010-40936.
9.
Botsch
,
M.
, and
Sorkine
,
O.
,
2008
, “
On Linear Variational Surface Deformation Methods
,”
IEEE Trans. Visualization Comput. Graphics
,
14
(
1
), pp.
213
230
.
10.
Yumer
,
M. E.
,
Chaudhuri
,
S.
,
Hodgins
,
J. K.
, and
Kara
,
L. B.
,
2015
, “
Semantic Shape Editing Using Deformation Handles
,”
ACM Trans. Graphics
,
34
(
4
), p.
86
.
11.
Yumer
,
M. E.
, and
Kara
,
L. B.
,
2014
, “
Co-Constrained Handles for Deformation in Shape Collections
,”
ACM Trans. Graphics
,
33
(
6
), p.
187
.
12.
Nyirenda
,
P. J.
, and
Bronsvoort
,
W. F.
,
2008
, “
Numeric and Curve Parameters for Freeform Surface Feature Models
,”
Comput. Aided Des.
,
40
(
8
), pp.
839
851
.
13.
Langerak
,
T. R.
,
2010
, “
Local Parameterization of Freeform Shapes Using Freeform Feature Recognition
,”
Comput. Aided Des.
,
42
(
8
), pp.
682
692
.
14.
He
,
K.
,
Chen
,
Z.
,
Jiang
,
J.
, and
Wang
,
L.
,
2014
, “
Creation of User-Defined Freeform Feature From Surface Models Based on Characteristic Curves
,”
Comput. Ind.
,
65
(
4
), pp.
598
609
.
15.
Kim
,
V. G.
,
Li
,
W.
,
Mitra
,
N. J.
,
Chaudhuri
,
S.
,
DiVerdi
,
S.
, and
Funkhouser
,
T.
,
2013
, “
Learning Part-Based Templates From Large Collections of 3D Shapes
,”
ACM Trans. Graphics
,
32
(
4
), p.
70
.
16.
Allen
,
B.
,
Curless
,
B.
, and
Popović
,
Z.
,
2003
, “
The Space of Human Body Shapes: Reconstruction and Parameterization From Range Scans
,”
ACM Trans. Graphics
,
22
(
3
), pp.
587
594
.
17.
Li
,
X.
,
Yin
,
Z.
,
Wei
,
L.
,
Wan
,
S.
,
Yu
,
W.
, and
Li
,
M.
,
2011
, “
Symmetry and Template Guided Completion of Damaged Skulls
,”
Comput. Graphics
,
35
(
4
), pp.
885
893
.
18.
Yeh
,
I. C.
,
Lin
,
C. H.
,
Sorkine
,
O.
, and
Lee
,
T. Y.
,
2011
, “
Template-Based 3D Model Fitting Using Dual-Domain Relaxation
,”
IEEE Trans. Visualization Comput. Graphics
,
17
(
8
), pp.
1178
1190
.
19.
Sorkine
,
O.
,
Cohen-Or
,
D.
,
Lipman
,
Y.
,
Alexa
,
M.
,
Rössl
,
C.
, and
Seidel
,
H. P.
,
2004
, “
Laplacian Surface Editing
,”
2004 Eurographics/ACM
SIGGRAPH
Symposium on Geometry Processing, Nice, France, July 8–10, pp.
175
184
.
20.
Thomas
,
T. P.
,
Anderson
,
D. D.
,
Willisc
,
A. R.
,
Liu
,
P.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
,
2011
, “
Virtual Pre-Operative Reconstruction Planning for Comminuted Articular Fractures
,”
Clin. Biomech.
,
26
(
2
), pp.
109
115
.
21.
Tam
,
G. K.
,
Cheng
,
Z. Q.
,
Lai
,
Y. K.
,
Langbein
,
F. C.
,
Liu
,
Y.
,
Marshall
,
D.
, and
Rosin
,
P. L.
,
2013
, “
Registration of 3D Point Clouds and Meshes: A Survey From Rigid to Nonrigid
,”
IEEE Trans. Visualization Comput. Graphics
,
19
(
7
), pp.
1199
1217
.
22.
Myronenko
,
A.
, and
Song
,
X.
,
2010
, “
Point Set Registration: Coherent Point Drift
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
32
(
12
), pp.
2262
2275
.
You do not currently have access to this content.