Anticoagulants are the treatment of choice for pulmonary embolism. When these fail or are contraindicated, vena cava filters are effective devices for preventing clots from the legs from migrating to the lung. Many uncertainties exist when a filter is inserted, especially during physiological activity such as normal breathing and the Valsalva maneuver. These activities are often connected with filter migration and vena cava damage due to the various related vein geometrical configurations. In this work, we analyzed the response of the vena cava during normal breathing and Valsalva maneuver, for a healthy vena cava and after insertion of a commercial Günther-Tulip® filter. Validated computational fluid dynamics (CFD) and patient specific data are used for analyzing blood flow inside the vena cava during these maneuvers. While during normal breathing, the vena cava flow can be considered almost stationary with a very low pressure gradient, during Valsalva the extravascular pressure compresses the vena cava resulting in a drastic reduction of the vein section, a global flow decrease through the cava but increasing the velocity magnitude. This change in the section is altered by the presence of the filter which forces the section of the vena cava before the renal veins to keep open. The effect of the presence of the filter is investigated during these maneuvers showing changes in wall shear stress and velocity patterns.

References

References
1.
Stein
,
P. D.
,
Patel
,
K.
,
Kalra
,
N.
,
El Baage
,
T
, T.,
Savarapu
,
P.
, and
Silberglet
,
A.
,
2002
, “
Deep Venous Thrombosis in a General Hospital
,”
Chest
,
122
(
3
), pp.
960
962
.
2.
Anderson
,
F.
,
Wheeler
,
H.
, and
Goldberg
,
R.
,
1991
, “
A Population Based Perspective of the Hospital Incidence and Case Fatality Rates of Deep Vein Thrombosis and Pulmonary Embolism: The Worcester DVT Study
,”
Arch. Intern. Med.
,
151
(
5
), pp.
933
938
.
3.
Hyers
,
T. M.
,
Hull
,
R. D.
, and
Morris
,
T. A.
,
2001
, “
Antithrombotic Therapy for Venous Thromboembolic Disease
,”
Chest
,
119
(
1
), pp.
176S
193S
.
4.
Swaminathan
,
T. N.
,
Hu
,
H. H.
, and
Patel
,
A. A.
,
2006
, “
Numerical Analysis of the Hemodynamics and Embolus Capture of a Greenfield Vena Cava Filter
,”
ASME J. Biomech. Eng.
,
128
(3), pp.
360
370
.
5.
Phillips
,
M. R.
,
Widrich
,
W. C.
, and
Johnson
,
W. C.
,
1980
, “
Perforation of the Inferior Vena Cava by the Kimray–Greenfield Filter
,”
Surgery
,
87
(
2
), pp.
233
235
.
6.
Greenfield
,
L. J.
,
Kyung
,
J. C.
, and
Tauscher
,
J. R.
,
1990
, “
Limitations of Percutaneous Insertion of Greenfield Filters
,”
J. Cardiovasc. Surg.
,
31
(
3
), pp.
344
350
.http://europepmc.org/abstract/med/2370269
7.
Grassi
,
C. J.
,
Swan
,
T. L.
, and
Cardella
,
J. F.
,
2001
, “
Quality Improvement Guidelines for Percutaneous Permanent Inferior Vena Cava Filter Placement for the Prevention of Pulmonary Embolism
,”
J. Vasc. Interventional Radiol.
,
12
(
2
), pp.
137
141
.
8.
Athanasoulis
,
C. A.
,
Halpern
,
J. A. K. E. F.
,
Geller
,
A. C. W. S. C.
, and
Fan
,
C.
,
2000
, “
Inferior Vena Caval Filters: Review of a 26-Year Single-Center Clinical Experience
,”
Radiology
,
216
(
1
), pp.
54
66
.
9.
Leask
,
R. L.
,
Johnston
,
K. W.
, and
Ohja
,
M.
,
2001
, “
In Vitro Hemodynamic Evaluation of a Simon Nitinol Vena Cava Filter: Possible Explanation of IVC Occlusion
,”
J. Vasc. Interventional Radiol.
,
12
(
5
), pp.
613
618
.
10.
Leask
,
R. L.
,
Johnston
,
K. W.
, and
Ohja
,
M.
,
2004
, “
Hemodynamic Effects of Clot Entrapment in the Trapease Inferior Vena Cava Filter
,”
J. Vasc. Interventional Radiol.
,
15
(
5
), pp.
485
490
.
11.
Wang
,
S. L.
, and
Singer
,
M. A.
,
2010
, “
Toward an Optimal Position for Inferior Vena Cava Filters: Computational Modeling of the Impact of Renal Vein Inflow With Celect and TrapEase Filters
,”
J. Vasc. Interventional Radiol.
,
21
(
3
), pp.
367
374
.
12.
Singer
,
M. A.
,
Henshaw
,
W. D.
, and
Wang
,
S. L.
,
2008
, “
Computational Modeling of Blood Flow in the Trapease Inferior Vena Cava Filter
,”
J. Vasc. Interventional Radiol.
,
20
(
6
), pp. 799–805.
13.
Stewart
,
S. F. C.
,
Robinson
,
R. A.
,
Nelson
,
R. A.
, and
Malinauskas
,
R. A.
,
2008
, “
Effects of Thrombosed Vena Cava Filters on Blood Flow: Flow Visualization and Numerical Modeling
,”
Ann. Biomed. Eng.
,
36
(
11
), pp.
1764
1781
.
14.
Singer
,
M. A.
,
Wang
,
S. L.
, and
Diachin
,
D. P.
,
2009
, “
Design Optimization of Vena Cava Filters: An Application to Dual Filtration Devices
,”
ASME J. Biomech. Eng.
,
132
(10), p.
101006
.
15.
Singer
,
M. A.
, and
Wang
,
S. L.
,
2011
, “
Modeling Blood Flow in a Tilted Inferior Vena Cava Filter: Does Tilt Adversely Affect Hemodynamics?
,”
J. Vasc. Interventional Radiol.
,
22
(
6
), pp.
229
235
.
16.
Rahbar
,
E.
,
Mori
,
D.
, and
Moore
,
J. E.
,
2011
, “
Three-Dimensional Analysis of Flow Disturbances Caused By Clots in Inferior Vena Cava Filters
,”
J. Vasc. Interventional Radiol.
,
22
(
6
), pp.
835
842
.
17.
Ren
,
Z.
,
Wang
,
S. L.
, and
Singer
,
M. A.
,
2012
, “
Modeling Hemodynamics in an Unoccluded and Partially Occluded Inferior Vena Cava Under Rest and Exercise Conditions
,”
Med. Biol. Eng. Comput.
,
50
(
3
), pp.
277
287
.
18.
Aycock
,
K. I.
,
Campbell
,
R. L.
,
Manning
,
K. B.
,
Sastry
,
S. P.
,
Shontz
,
S. M.
,
Lynch
,
F. C.
, and
Craven
,
B. A.
,
2014
, “
A Computational Method for Predicting Inferior Vena Cava Filter Performance on a Patient-Specific Basis
,”
ASME J. Biomech. Eng.
,
136
(
8
), p.
081003
.
19.
Greenfield
,
L. J.
, and
Proctor
,
M. C.
,
1992
, “
Experimental Embolic Capture By Asymmetric Greenfield Filters
,”
J. Vasc. Surg.
,
16
(
3
), pp.
436
444
.
20.
Kuzo
,
R. S.
,
Pooley
,
R. A.
,
Crook
,
J. E.
,
Heckman
,
M. G.
, and
Gerber
,
T. C.
,
2007
, “
Measurement of Caval Blood Flow With MRI During Respiratory Maneuvers: Implications for Vascular Contrast Opacification on Pulmonary CT Angiographic Studies
,”
Am. J. Roentgenol.
,
188
(
3
), pp.
839
842
.
21.
Kowallick
,
J. T.
,
Joseph
,
A. A.
,
Unterberg-Buchwald
,
C.
,
Fasshauer
,
M.
,
Van Wijk
,
K.
,
Merboldt
,
K. D.
,
Voit
,
D.
,
Frahm
,
J.
,
Lotz
,
J.
, and
Sohns
,
J. M.
,
2014
, “
Measurement of Caval Blood Flow With MRI During Respiratory Maneuvers: Implications for Vascular Contrast Opacification on Pulmonary CT Angiographic Studie
,”
Br. J. Radiol.
,
1042
(
87
), p.
20140401
.
22.
Taylor
,
T.
,
1996
, “
The Valsalva Manoeuvre a Critical Review
,”
SPUMS J.
,
26
, pp.
8
13
.http://dspace.rubicon-foundation.org:8080/xmlui/handle/123456789/6264
23.
Nishimura
,
R. A.
, and
Tajik
,
A. J.
,
1986
, “
The Valsalva Manoeuvre and Response Revisited
,”
Mayo Clin. Proc.
,
61
(
3
), pp.
211
217
.
24.
Nicolás
,
M.
,
Palero
,
V. R.
,
Peñaa
,
E.
,
Arroyo
,
M. P.
,
Martínez
,
M. A.
, and
Malvè
,
M.
,
2015
, “
Numerical and Experimental Study of the Fluid Flow Through a Medical Device
,”
Int. Commun. Heat Mass Transfer
,
61
, pp.
170
178
.
25.
Laborda
,
A.
,
Kuo
,
W. T.
,
Ioakeim
,
I.
,
De Blas
,
I.
,
Malvè
,
M.
,
Lahuerta
,
C.
, and
De Gregorio
,
M. A.
,
2015
, “
Respiratory-Induced Haemodynamic Changes: A Contributing Factor to IVC Filter Penetration
,”
Cardiovasc. Interventional Radiol.
,
38
(
5
), pp.
1192
1197
.
26.
Laborda
,
A.
,
Malvè
,
M.
,
De Blas
,
I.
,
Ioakeim
,
I.
,
Kuo
,
W. T.
, and
De Gregorio
,
M. A.
,
2014
, “
Influence of Breathing Movements and Valsalva Maneuver on Vena Caval Dynamics
,”
World J. Radiol.
,
6
(
10
), pp.
833
839
.
27.
Sastry
,
S. P.
,
Kim
,
J.
,
Shontz
,
S. M.
,
Craven
,
B. A.
,
Lynch
,
F. C.
,
Manning
,
K. B.
, and
Panitanarak
,
T.
,
2013
,
Image-Based Geometric Modeling and Mesh Generation
, Vol.
3
,
Springer
,
Dordrecht, The Netherlands
.
28.
Cheng
,
C. P.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
,
2003
, “
Inferior Vena Cava Hemodynamics Quantified In Vivo at Rest and During Cycling Exercise Using Magnetic Resonance Imaging
,”
Am. J. Physiol. Heart Circ.
,
284
(
4
), pp.
H1161
H1167
.
29.
ANSYS,
2012
, “
ANSYS CFX Solver Theory Guide
,” Ansys, Canonsburg, PA.
30.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work, the Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci.
,
12
(
3
), pp.
207
214
.
31.
Moore
,
J. E.
, and
Berry
,
J. L.
,
2002
, “
Fluid and Solid Mechanical Implications of Vascular Stenting
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
498
508
.
32.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
J. Am. Med. Assoc.
,
282
(
21
), pp.
2035
2042
.
33.
Balossino
,
R.
,
Gervaso
,
F.
,
Migliavacca
,
F.
, and
Dubini
,
G.
,
2008
, “
Effects of Different Stent Designs on Local Hemodynamics in Stented Arteries
,”
J. Biomech.
,
41
(
5
), pp.
1053
1061
.
34.
Wexler
,
L.
,
Bergel
,
D. H.
,
Gabe
,
I. T.
,
Makin
,
G. S.
, and
Mills
,
C. J.
,
1968
, “
Velocity of Blood Flow in Normal Human Venae Cavae
,”
Circ. Res.
,
23
(
3
), pp.
349
359
.
35.
García
,
A.
,
Lerga
,
S.
,
Pexña
,
E.
,
Malvè
,
M.
,
Laborda
,
A.
,
De Gregorio
,
M. A.
, and
Martínez
,
M. A.
,
2012
, “
Evaluation of Migration Forces of a Retrievable Filter: Experimental Setup and Finite Element Study
,”
Med. Eng. Phys.
,
34
(
8
), pp.
1167
1176
.
36.
Laborda
,
A.
,
Lostalé
,
F.
,
Rodríguez
,
J. B.
,
Bielsa
,
M. A.
,
Martínez
,
M. A.
,
Serrano
,
C.
,
Fernández
,
R.
, and
De Gregorio
,
M. A.
,
2011
, “
Laparoscopic Demonstration of Vena Cava Wall Penetration by Inferior Vena Cava Filters in an Ovine Model
,”
J. Vasc. Interventional Radiol.
,
22
(
6
), pp.
851
856
.
37.
De Gregorio
,
M. A.
,
Gamboa
,
P.
,
Gimeno
,
M. J.
,
Madariaga
,
B.
,
Tobío
,
R.
,
Herrera
,
M.
,
Medrano
,
J.
,
Mainar
,
A.
, and
Alfonso
,
R.
,
2003
, “
The Günther Tulip Retrievable Filter: Prolonged Temporary Filtration by Repose-Tinning Within the Inferior Vena Cava
,”
J. Vasc. Interventional Radiol.
,
14
(
10
), pp.
1259
1265
.
38.
De Gregorio
,
M. A.
,
Laborda
,
A.
,
Higuera
,
M. T.
,
Lostale
,
F.
,
Gómez-Arrue
,
J.
,
Serrano
,
C.
,
Martínez
,
M. A.
, and
Viloria
,
A.
,
2008
, “
Removal of Retrievable Inferior Vena Cava Filters 90 Days After Implantation in an Ovine Model: Is There a Time Limit for Removal?
,”
Arch. Bronconeumologia
,
44
(11), pp.
591
596
.
You do not currently have access to this content.