Patients born with a single functional ventricle typically undergo three-staged surgical palliation in the first years of life, with the last stage realizing a cross-like total cavopulmonary connection (TCPC) of superior and inferior vena cavas (SVC and IVC) with both left and right pulmonary arteries (LPA and RPA), allowing all deoxygenated blood to flow passively back to the lungs (Fontan circulation). Even though within the past decades more patients survive into adulthood, the connection comes at the prize of deficiencies such as chronic systemic venous hypertension and low cardiac output (CO), which ultimately may lead to Fontan failure. Many studies have suggested that the TCPC’s inherent insufficiencies might be addressed by adding a cavopulmonary assist device (CPAD) to provide the necessary pressure boost. While many device concepts are being explored, few take into account the complex cardiac anatomy typically associated with TCPCs. In this study, we focus on the extra cardiac conduit (ECC) vascular graft connecting IVC and pulmonary arteries (PAs) as one possible landing zone for a CPAD and describe its geometric variability in a cohort of 18 patients that had their TCPC realized with a 20 mm vascular graft. We report traditional morphometric parameters and apply statistical shape modeling (SSM) to determine the main contributors of graft shape variability. Such information may prove useful when designing CPADs that are adapted to the challenging anatomical boundaries in Fontan patients. We further compute the anatomical mean 3D graft shape (template graft) as a representative of key shape features of our cohort and prove this template graft to be a significantly better approximation of population and individual patient’s hemodynamics than a commonly used simplified tube geometry. We therefore conclude that statistical shape modeling results can provide better models of geometric and hemodynamic boundary conditions associated with complex cardiac anatomy, which in turn may impact on improved cardiac device development.

References

References
1.
Gewillig
,
M.
,
2005
, “
The Fontan Circulation
,”
Heart
,
91
(
6
), pp.
839
846
.
2.
Gersony
,
W. M.
,
2008
, “
Fontan Operation After 3 Decades
,”
Circulation
,
117
(
1
), pp.
13
15
.
3.
Jaquiss
,
R. D. B.
, and
Aziz
,
H.
,
2016
, “
Is Four Stage Management the Future of Univentricular Hearts? Destination Therapy in the Young
,”
Semin. Thorac. Cardiovasc. Surg.: Pediatr. Card. Surg. Annu.
,
19
(
1
), pp.
50
54
.
4.
McRae
,
M. E. R.
,
2013
, “
Long-Term Issues After the Fontan Procedure
,”
AACN Adv. Crit. Care
,
24
(
3
), pp.
264
282
.
5.
de Leval
,
M. R.
,
1998
, “
The Fontan Circulation: What Have We Learned? What to Expect?
,”
Pediatr. Cardiol.
,
19
(
4
), pp.
316
320
.
6.
Rodefeld
,
M. D.
,
Boyd
,
J. H.
,
Myers
,
C. D.
,
LaLone
,
B. J.
,
Bezruczko
,
A. J.
,
Potter
,
A. W.
, and
Brown
,
J. W.
,
2003
, “
Cavopulmonary Assist: Circulatory Support for the Univentricular Fontan Circulation
,”
Ann. Thorac. Surg.
,
76
(
6
), pp.
1911
1916
.
7.
Delorme
,
Y.
,
Anupindi
,
K.
,
Kerlo
,
A. E.
,
Shetty
,
D.
,
Rodefeld
,
M.
,
Chen
,
J.
, and
Frankel
,
S.
,
2013
, “
Large Eddy Simulation of Powered Fontan Hemodynamics
,”
J. Biomech.
,
46
(
2
), pp.
408
422
.
8.
Haggerty
,
C. M.
,
Fynn-Thompson
,
F.
,
McElhinney
,
D. B.
,
Valente
,
A. M.
,
Saikrishnan
,
N.
,
del Nido
,
P. J.
, and
Yoganathan
,
A. P.
,
2012
, “
Experimental and Numeric Investigation of Impella Pumps as Cavopulmonary Assistance for a Failing Fontan
,”
J. Thorac. Cardiovasc. Surg.
,
144
(
3
), pp.
563
569
.
9.
Throckmorton
,
A. L.
,
Kapadia
,
J. Y.
,
Chopski
,
S. G.
,
Bhavsar
,
S. S.
,
Moskowitz
,
W. B.
,
Gullquist
,
S. D.
,
Gangemi
,
J. J.
,
Haggerty
,
C. M.
, and
Yoganathan
,
A. P.
,
2010
, “
Numerical, Hydraulic, and Hemolytic Evaluation of an Intravascular Axial Flow Blood Pump to Mechanically Support Fontan Patients
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
324
336
.
10.
Throckmorton
,
A. L.
,
Lopez-Isaza
,
S.
, and
Moskowitz
,
W.
,
2013
, “
Dual-Pump Support in the Inferior and Superior Vena Cavae of a Patient-Specific Fontan Physiology
,”
Artif. Organs
,
37
(
6
), pp.
513
522
.
11.
Lacour-Gayet
,
F. G.
,
Lanning
,
C. J.
,
Stoica
,
S.
,
Wang
,
R.
,
Rech
,
B. A.
,
Goldberg
,
S.
, and
Shandas
,
R.
,
2009
, “
An Artificial Right Ventricle for Failing Fontan: In Vitro and Computational Study
,”
Ann. Thorac. Surg.
,
88
(
1
), pp.
170
176
.
12.
Throckmorton
,
A. L.
,
Ballman
,
K. K.
,
Myers
,
C. D.
,
Frankel
,
S. H.
,
Brown
,
J. W.
, and
Rodefeld
,
M. D.
,
2008
, “
Performance of a 3-Bladed Propeller Pump to Provide Cavopulmonary Assist in the Failing Fontan Circulation
,”
Ann. Thorac. Surg.
,
86
(
4
), pp.
1343
1347
.
13.
Rodefeld
,
M. D.
,
Coats
,
B.
,
Fisher
,
T.
,
Giridharan
,
G. A.
,
Chen
,
J.
,
Brown
,
J. W.
, and
Frankel
,
S. H.
,
2010
, “
Cavopulmonary Assist for the Univentricular Fontan Circulation: von Kármán Viscous Impeller Pump
,”
J. Thorac. Cardiovasc. Surg.
,
140
(
3
), pp.
529
536
.
14.
Kennington
,
J. R.
,
Frankel
,
S. H.
,
Chen
,
J.
,
Koenig
,
S. C.
,
Sobieski
,
M. A.
,
Giridharan
,
G. A.
, and
Rodefeld
,
M. D.
,
2011
, “
Design Optimization and Performance Studies of an Adult Scale Viscous Impeller Pump for Powered Fontan in an Idealized Total Cavopulmonary Connection
,”
Cardiovasc. Eng. Technol.
,
2
(
4
), pp.
237
243
.
15.
Giridharan
,
G. A.
,
Koenig
,
S. C.
,
Kennington
,
J.
,
Sobieski
,
M. A.
,
Chen
,
J.
,
Frankel
,
S. H.
, and
Rodefeld
,
M. D.
,
2013
, “
Performance Evaluation of a Pediatric Viscous Impeller Pump for Fontan Cavopulmonary Assist
,”
J. Thorac. Cardiovasc. Surg.
,
145
(
1
), pp.
249
257
.
16.
Valdovinos
,
J.
,
Shkolyar
,
E.
,
Carman
,
G. P.
, and
Levi
,
D. S.
,
2014
, “
In Vitro Evaluation of an External Compression Device for Fontan Mechanical Assistance
,”
Artif. Organs
,
38
(
3
), pp.
199
207
.
17.
Yamada
,
A.
,
Shiraishi
,
Y.
,
Miura
,
H.
,
Yambe
,
T.
,
Omran
,
M. H.
,
Shiga
,
T.
,
Tsuboko
,
Y.
,
Homma
,
D.
, and
Yamagishi
,
M.
,
2013
, “
Peristaltic Hemodynamics of a New Pediatric Circulatory Assist System for Fontan Circulation Using Shape Memory Alloy Fibers
,”
35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Osaka, Japan, July 3–7, pp.
683
686
.
18.
KrishnankuttyRema
,
R.
,
Dasi
,
L. P.
,
Pekkan
,
K.
,
Sundareswaran
,
K.
,
Fogel
,
M.
,
Sharma
,
S.
,
Kanter
,
K.
,
Spray
,
T.
, and
Yoganathan
,
A. P.
,
2008
, “
Quantitative Analysis of Extracardiac Versus Intraatrial Fontan Anatomic Geometries
,”
Ann. Thorac. Surg.
,
85
(
3
), pp.
810
817
.
19.
Giridharan
,
G. A.
,
Ising
,
M.
,
Sobieski
,
M. A.
,
Koenig
,
S. C.
,
Chen
,
J.
,
Frankel
,
S.
, and
Rodefeld
,
M. D.
,
2014
, “
Cavopulmonary Assist for the Failing Fontan Circulation: Impact of Ventricular Function on Mechanical Support Strategy
,”
ASAIO J.
,
60
(
6
), pp.
707
715
.
20.
Dasi
,
L. P.
,
Sundareswaran
,
K. S.
,
Sherwin
,
C.
,
de Zelicourt
,
D.
,
Kanter
,
K.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2010
, “
Larger Aortic Reconstruction Corresponds to Diminished Left Pulmonary Artery Size in Patients With Single-Ventricle Physiology
,”
J. Thorac. Cardiovasc. Surg.
,
139
(
3
), pp.
557
561
.
21.
Young
,
A. A.
, and
Frangi
,
A. F.
,
2009
, “
Computational Cardiac Atlases: From Patient to Population and Back
,”
Exp. Physiol.
,
94
(
5
), pp.
578
596
.
22.
Farrar
,
G.
,
Suinesiaputra
,
A.
,
Gilbert
,
K.
,
Perry
,
J. C.
,
Hegde
,
S.
,
Marsden
,
A.
,
Young
,
A. A.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
,
2016
, “
Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease
,”
Prog. Pediatr. Cardiol.
,
43
, pp.
61
69
.
23.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
NeuroImage
,
31
(
3
), pp.
1116
1128
.
24.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1097
1112
.
25.
Piccinelli
,
M.
,
Veneziani
,
A.
,
Steinman
,
D. A.
,
Remuzzi
,
A.
, and
Antiga
,
L.
,
2009
, “
A Framework for Geometric Analysis of Vascular Structures: Application to Cerebral Aneurysms
,”
IEEE Trans. Med. Imaging
,
28
(
8
), pp.
1141
1155
.
26.
Antiga
,
L.
, and
Steinman
,
D. A.
,
2004
, “
Robust and Objective Decomposition and Mapping of Bifurcating Vessels
,”
IEEE Trans. Med. Imaging
,
23
(
6
), pp.
704
713
.
27.
Durrleman
,
S.
,
Prastawa
,
M.
,
Charon
,
N.
,
Korenberg
,
J. R.
,
Joshi
,
S.
,
Gerig
,
G.
, and
Trouvé
,
A.
,
2014
, “
Morphometry of Anatomical Shape Complexes With Dense Deformations and Sparse Parameters
,”
NeuroImage
,
101
, pp.
35
49
.
28.
Durrleman
,
S.
,
Pennec
,
X.
,
Trouvé
,
A.
, and
Ayache
,
N.
,
2009
, “
Statistical Models of Sets of Curves and Surfaces Based on Currents
,”
Med. Image Anal.
,
13
(
5
), pp.
793
808
.
29.
Bruse
,
J. L.
,
Cervi
,
E.
,
McLeod
,
K.
,
Biglino
,
G.
,
Sermesant
,
M.
,
Pennec
,
X.
,
Taylor
,
A. M.
,
Schievano
,
S.
, and
Hsia
,
T.-Y.
,
2016
, “
Looks do Matter! Aortic Arch Shape Following Hypoplastic Left Heart Syndrome Palliation Correlates With Cavopulmonary Outcomes
,”
Ann. Thorac. Surg.
,
103
(
2
), pp.
645
654
.
30.
Beg
,
M. F.
,
Miller
,
M. I.
,
Trouvé
,
A.
, and
Younes
,
L.
,
2005
, “
Computing Large Deformation Metric Mappings Via Geodesic Flows of Diffeomorphisms
,”
Int. J. Comput. Vision
,
61
(
2
), pp.
139
157
.
31.
Bruse
,
J. L.
,
McLeod
,
K.
,
Biglino
,
G.
,
Ntsinjana
,
H. N.
,
Capelli
,
C.
,
Hsia
,
T.-Y.
,
Sermesant
,
M.
,
Pennec
,
X.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
2016
, “
A Statistical Shape Modelling Framework to Extract 3D Shape Biomarkers From Medical Imaging Data: Assessing Arch Morphology of Repaired Coarctation of the Aorta
,”
BMC Med. Imaging
,
16
(
1
), p.
40
.
32.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.
33.
Gower
,
J. C.
,
1975
, “
Generalized Procrustes Analysis
,”
Psychometrika
,
40
(
1
), pp.
33
51
.
34.
Jolliffe
,
I. T.
,
2002
,
Principal Component Analysis
,
Springer
,
New York
.
35.
Mansi
,
T.
,
Durrleman
,
S.
,
Bernhardt
,
B.
,
Sermesant
,
M.
,
Delingette
,
H.
,
Voigt
,
I.
,
Lurz
,
P.
,
Taylor
,
A. M.
,
Blanc
,
J.
,
Boudjemline
,
Y.
,
Pennec
,
X.
, and
Ayache
,
N.
,
2009
, “
A Statistical Model of Right Ventricle in Tetralogy of Fallot for Prediction of Remodelling and Therapy Planning
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2009
,
G.-Z.
Yang
,
D.
Hawkes
,
D.
Rueckert
,
A.
Noble
, and
C.
Taylor
, eds.,
Springer
,
Berlin
, pp.
214
221
.
36.
Mansi
,
T.
,
Voigt
,
I.
,
Leonardi
,
B.
,
Pennec
,
X.
,
Durrleman
,
S.
,
Sermesant
,
M.
,
Delingette
,
H.
,
Taylor
,
A. M.
,
Boudjemline
,
Y.
,
Pongiglione
,
G.
, and
Ayache
,
N.
,
2011
, “
A Statistical Model for Quantification and Prediction of Cardiac Remodelling: Application to Tetralogy of Fallot
,”
IEEE Trans. Med. Imaging
,
30
(
9
), pp.
1605
1616
.
37.
Ahrens
,
J.
,
Geveci
,
B.
, and
Law
,
C.
,
2005
, “
ParaView: An End-User Tool for Large-Data Visualization
,”
Visualization Handbook
,
Elsevier, Burlington, MA
, p.
717
.
38.
Rogers
,
L. S.
,
Glatz
,
A. C.
,
Ravishankar
,
C.
,
Spray
,
T. L.
,
Nicolson
,
S. C.
,
Rychik
,
J.
,
Rush
,
C. H.
,
Gaynor
,
J. W.
, and
Goldberg
,
D. J.
,
2012
, “
18 Years of the Fontan Operation at a Single Institution: Results From 771 Consecutive Patients
,”
J. Am. Coll. Cardiol.
,
60
(
11
), pp.
1018
1025
.
39.
Lee
,
C.
,
Lee
,
C.-H.
,
Hwang
,
S. W.
,
Lim
,
H. G.
,
Kim
,
S.-J.
,
Lee
,
J. Y.
,
Shim
,
W.-S.
, and
Kim
,
W.-H.
,
2007
, “
Midterm Follow-Up of the Status of Gore-Tex Graft After Extracardiac Conduit Fontan Procedure
,”
Eur. J. Cardiothorac. Surg.
,
31
(
6
), pp.
1008
1012
.
40.
Ochiai
,
Y.
,
Imoto
,
Y.
,
Sakamoto
,
M.
,
Kajiwara
,
T.
,
Sese
,
A.
,
Watanabe
,
M.
,
Ohno
,
T.
, and
Joo
,
K.
,
2009
, “
Mid-Term Follow-Up of the Status of Gore-Tex Graft After Extracardiac Conduit Fontan Procedure
,”
Eur. J. Cardiothorac. Surg.
,
36
(
1
), pp.
63
68
.
41.
McGregor
,
R.
,
Szczerba
,
D.
,
von Siebenthal
,
M.
,
Muralidhar
,
K.
, and
Székely
,
G.
,
2008
, “
Exploring the Use of Proper Orthogonal Decomposition for Enhancing Blood Flow Images Via Computational Fluid Dynamics
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008
,
D.
Metaxas
,
L.
Axel
,
G.
Fichtinger
, and
G.
Székely
, eds.,
Springer
,
Berlin
, pp.
782
789
.
42.
Guibert
,
R.
,
McLeod
,
K.
,
Caiazzo
,
A.
,
Mansi
,
T.
,
Fernández
,
M. A.
,
Sermesant
,
M.
,
Pennec
,
X.
,
Vignon-Clementel
,
I. E.
,
Boudjemline
,
Y.
, and
Gerbeau
,
J.-F.
,
2014
, “
Group-Wise Construction of Reduced Models for Understanding and Characterization of Pulmonary Blood Flows From Medical Images
,”
Med. Image Anal.
,
18
(
1
), pp.
63
82
.
43.
Beier
,
S.
,
Ormiston
,
J.
,
Webster
,
M.
,
Cater
,
J.
,
Norris
,
S.
,
Medrano-Gracia
,
P.
,
Young
,
A.
, and
Cowan
,
B.
,
2016
, “
Impact of Bifurcation Angle and Other Anatomical Characteristics on Blood Flow–A Computational Study of Non-Stented and Stented Coronary Arteries
,”
J. Biomech.
,
49
(
9
), pp.
1570
1582
.
44.
Haggerty
,
C. M.
,
Restrepo
,
M.
,
Tang
,
E.
,
de Zélicourt
,
D. A.
,
Sundareswaran
,
K. S.
,
Mirabella
,
L.
,
Bethel
,
J.
,
Whitehead
,
K. K.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2014
, “
Fontan Hemodynamics From 100 Patient-Specific Cardiac Magnetic Resonance Studies: A Computational Fluid Dynamics Analysis
,”
J. Thorac. Cardiovasc. Surg.
,
148
(
4
), pp.
1481
1489
.
45.
Zuluaga
,
M. A.
,
Burgos
,
N.
,
Mendelson
,
A. F.
,
Taylor
,
A. M.
, and
Ourselin
,
S.
,
2015
, “
Voxelwise Atlas Rating for Computer Assisted Diagnosis: Application to Congenital Heart Diseases of the Great Arteries
,”
Med. Image Anal.
,
26
(
1
), pp.
185
194
.
You do not currently have access to this content.