Nowadays, transcatheter aortic valve (TAV) replacement is an alternative to surgical therapy in selected high risk patients for the treatment of aortic stenosis. However, left ventricular contraction determines a severe cyclic loading for the implanted stent-frame, undermining its long-term durability. Technical standards indicate in vitro tests as a suitable approach for the assessment of TAV fatigue behavior: generally, they do not specify test methods but require to test TAV in the worst loading conditions. The most critical conditions could be different according to the specific valve design, hence the compartment where deploying the valve has to be properly identified. A fast and reliable computational methodology could significantly help to face this issue. In this paper, a numerical approach to analyze Nickel-Titanium TAV stent-frame behavior during in vitro durability tests is proposed. A simplified multistage strategy was adopted where, in each stage, only two of the three involved components are considered. As a proof-of-concept, the method was applied to a TAV prototype. Despite its simplifications, the developed computational framework gave useful insights into the stent-frame failures behavior during a fatigue test. Numerical results agree with experimental findings. In particular, the most dangerous condition was identified among a number of experimental tests, where different compartments and pressure gradients were investigated. The specific failure location was also correctly recognized. In conclusion, the presented methodology provides a tool to support the choice of proper testing conditions for the in vitro assessment of TAV fatigue behavior.

References

References
1.
Zajarias
,
A.
, and
Cribier
,
A. G.
,
2009
, “
Outcomes and Safety of Percutaneous Aortic Valve Replacement
,”
J. Am. Coll. Cardiol.
,
53
(
20
), pp.
1829
1836
.
2.
Dvir
,
D.
,
Webb
,
J. G.
,
Bleiziffer
,
S.
,
Pasic
,
M.
,
Waksman
,
R.
,
Kodali
,
S.
,
Barbanti
,
M.
,
Latib
,
A.
,
Schaefer
,
U.
,
Rodés-Cabau
,
J.
,
Treede
,
H.
,
Piazza
,
N.
,
Hildick-Smith
,
D.
,
Himbert
,
D.
,
Walther
,
T.
,
Hengstenberg
,
C.
,
Nissen
,
H.
,
Bekeredjian
,
R.
,
Presbitero
,
P.
,
Ferrari
,
E.
,
Segev
,
A.
,
de Weger
,
A.
,
Windecker
,
S.
,
Moat
,
N. E.
,
Napodano
,
M.
,
Wilbring
,
M.
,
Cerillo
,
A. G.
,
Brecker
,
S.
,
Tchetche
,
D.
,
Lefèvre
,
T.
,
De Marco
,
F.
,
Fiorina
,
C.
,
Petronio
,
A. S.
,
Teles
,
R. C.
,
Testa
,
L.
,
Laborde
,
J. C.
,
Leon
,
M. B.
, and
Kornowski
,
R.
, and Valve-in-Valve International Data Registry Investigators,
2014
, “
Transcatheter Aortic Valve Implantation in Failed Bioprosthetic Surgical Valves
,”
JAMA-J. Am. Med. Assoc.
,
312
(
2
), pp.
162
170
.
3.
Nishimura
,
R. A.
,
Otto
,
C. M.
,
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Erwin
,
J. P.
, III
,
Guyton
,
R. A.
,
O'Gara
,
P. T.
,
Ruiz
,
C. E.
,
Skubas
,
N. J.
,
Sorajja
,
P.
,
Sundt
,
T. M.
, III
,
Thomas
,
J. D.
,
Anderson
,
J. L.
, Halperin, J. L.,
Albert
,
N. M.
,
Bozkurt
,
B.
,
Brindis
,
R. G.
,
Creager
,
M. A.
,
Curtis
,
L. H.
,
DeMets
,
D.
,
Guyton
,
R. A.
,
Hochman
,
J. S.
,
Kovacs
,
R. J.
,
Ohman
,
E. M.
,
Pressler
,
S. J.
,
Sellke
,
F. W.
,
Shen
,
W. K.
,
Stevenson
,
W. G.
,
Yancy
,
C. W.
, American College of Cardiology, American College of Cardiology/American Heart Association, and American Heart Association,
2014
, “
AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
,”
J. Am. Coll. Cardiol.
,
63
(
22
), pp.
e57
e185
.
4.
Makkar
,
R. R.
,
Fontana
,
G. P.
,
Jilaihawi
,
H.
,
Kapadia
,
S.
,
Pichard
,
A. D.
,
Douglas
,
P. S.
,
Thourani
,
V. H.
,
Babaliaros
,
V. C.
,
Webb
,
J. G.
,
Herrmann
,
H. C.
,
Bavaria
,
J. E.
,
Kodali
,
S.
,
Brown
,
D. L.
,
Bowers
,
B.
,
Dewey
,
T. M.
,
Svensson
,
L. G.
,
Tuzcu
,
M.
,
Moses
,
J. W.
,
Williams
,
M. R.
,
Siegel
,
R. J.
,
Akin
,
J. J.
,
Anderson
,
W. N.
,
Pocock
,
S.
,
Smith
,
C. R.
,
Leon
,
M. B.
, and PARTNER Trial Investigators,
2012
, “
Transcatheter Aortic-Valve Replacement for Inoperable Severe Aortic Stenosis
,”
N. Engl. J. Med.
,
366
(
18
), pp.
1696
1704
.
5.
Adams
,
D. H.
,
Popma
,
J. J.
,
Reardon
,
M. J.
,
Yakubov
,
S. J.
,
Coselli
,
J. S.
,
Deeb
,
G. M.
,
Gleason
,
T. G.
,
Buchbinder
,
M.
,
Hermiller
,
J.
, Jr.,
Kleiman
,
N. S.
,
Chetcuti
,
S.
,
Heiser
,
J.
,
Merhi
,
W.
,
Zorn
,
G.
,
Tadros
,
P.
,
Robinson
,
N.
,
Petrossian
,
G.
,
Hughes
,
G. C.
,
Harrison
,
J. K.
,
Conte
,
J.
,
Maini
,
B.
,
Mumtaz
,
M.
,
Chenoweth
,
S.
,
Oh
,
J. K.
, and U.S. CoreValve Clinical Investigators,
2014
, “
Transcatheter Aortic Valve Replacement With a Self-Expanding Prosthesis
,”
N. Engl. J. Med.
,
370
(
19
), pp.
1790
1798
.
6.
Haussig
,
S.
,
Schuler
,
G.
, and
Linke
,
A.
,
2014
, “
World Wide TAVI Registries: What Have We Learned?
,”
Clin. Res. Cardiol.
,
103
(
8
), pp.
603
612
.
7.
Bonhoeffer
,
P.
,
Boudjemline
,
Y.
,
Saliba
,
Z.
,
Merckx
,
J.
,
Aggoun
,
Y.
,
Bonnet
,
D.
,
Acar
,
P.
,
Le Bidois
,
J.
,
Sidi
,
D.
, and
Kachaner
,
J.
,
2000
, “
Percutaneous Replacement of Pulmonary Valve in a Right-Ventricle to Pulmonary-Artery Prosthetic Conduit With Valve Dysfunction
,”
Lancet
,
356
(
9239
), pp.
1403
1405
.
8.
Cribier
,
A.
,
Eltchaninoff
,
H.
,
Bash
,
A.
,
Borenstein
,
N.
,
Tron
,
C.
,
Bauer
,
F.
,
Derumeaux
,
G.
,
Anselme
,
F.
,
Laborde
,
F.
, and
Leon
,
M.
,
2002
, “
Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description
,”
Circulation
,
106
(
24
), pp.
3006
3008
.
9.
Leon
,
M.
,
Smith
,
C.
,
Mack
,
M.
,
Miller
,
D.
,
Moses
,
J.
,
Svensson
,
L.
,
Tuzcu
,
E.
,
Webb
,
J.
,
Fontana
,
G.
,
Makkar
,
R.
,
Brown
,
D.
,
Block
,
P.
,
Guyton
,
R.
,
Pichard
,
A.
,
Bavaria
,
J.
,
Herrmann
,
H.
,
Douglas
,
P.
,
Petersen
,
J.
,
Akin
,
J.
,
Anderson
,
W.
,
Wang
,
D.
, and
Pocock
,
S.
,
2010
, “
Transcatheter Aortic Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery
,”
N. Engl. J. Med.
,
363
(
17
), pp.
1597
1607
.
10.
Piazza
,
N.
,
Bleiziffer
,
S.
,
Brockmann
,
G.
,
Hendrick
,
R.
,
Deutsch
,
M.-A.
,
Opitz
,
A.
,
Mazzitelli
,
D.
,
Tassani-Prell
,
P.
,
Schreiber
,
C.
, and
Lange
,
R.
,
2011
, “
Transcatheter Aortic Valve Implantation for Failing Surgical Aortic Bioprosthetic Valve: From Concept to Clinical Application and Evaluation—Part 1
,”
JACC: Cardiovasc. Interventions
,
4
(
7
), pp.
721
732
.
11.
Milburn
,
K.
,
Bapat
,
V.
, and
Thomas
,
M.
,
2014
, “
Valve-in-Valve Implantations: Is This the New Standard for Degenerated Bioprostheses? Review of the Literature
,”
Clin. Res. Cardiol.
,
103
(
6
), pp.
417
429
.
12.
Webb
,
J.
,
Pasupati
,
S.
,
Humphries
,
K.
,
Thompson
,
C.
,
Altwegg
,
L.
,
Moss
,
R.
,
Sinhal
,
A.
,
Carere
,
R.
,
Munt
,
B.
,
Ricci
,
D.
,
Ye
,
J.
,
Cheung
,
A.
, and
Lichtenstein
,
S.
,
2007
, “
Percutaneous Transarterial Aortic Valve Replacement in Selected High-Risk Patients With Aortic Stenosis
,”
Circulation
,
116
(
7
), pp.
755
763
.
13.
Piazza
,
N.
,
Grube
,
E.
,
Gerckens
,
U.
,
den Heijer
,
P.
,
Linke
,
A.
,
Luha
,
O.
,
Ramondo
,
A.
,
Ussia
,
G.
,
Wenaweser
,
P.
,
Windecker
,
S.
,
Laborde
,
J.
,
de Jaegere
,
P.
, and
Serruys
,
P.
,
2008
, “
Procedural and 30-Day Outcomes Following Transcatheter Aortic Valve Implantation Using the Third Generation (18 fr) Corevalve Revalving System: Results From the Multicentre, Expanded Evaluation Registry 1-Year Following CE Mark Approval
,”
Eurointervention
,
4
(
2
), pp.
242
249
.
14.
ISO
,
2013
, “
Cardiovascular Implants—Cardiac Valce Prostheses
,” International Standard Organization, Geneva, Switzerland.
15.
Nordmeyer
,
J.
,
Coats
,
L.
,
Lurz
,
P.
,
Lee
,
T.-Y.
,
Derrick
,
G.
,
Rees
,
P.
,
Cullen
,
S.
,
Taylor
,
A.
,
Khambadkone
,
S.
, and
Bonhoeffer
,
P.
,
2008
, “
Percutaneous Pulmonary Valve-in-Valve Implantation: A Successful Treatment Concept for Early Device Failure
,”
Eur. Heart J.
,
29
(
6
), pp.
810
815
.
16.
McElhinney
,
D.
,
Hellenbrand
,
W.
,
Zahn
,
E.
,
Jones
,
T.
,
Cheatham
,
J.
,
Lock
,
J.
, and
Vincent
,
J.
,
2010
, “
Short- and Medium-Term Outcomes After Transcatheter Pulmonary Valve Placement in the Expanded Multicenter U.S. Melody Valve Trial
,”
Circulation
,
122
(
5
), pp.
507
516
.
17.
McElhinney
,
D. B.
,
Cheatham
,
J. P.
,
Jones
,
T. K.
,
Lock
,
J. E.
,
Vincent
,
J. A.
,
Zahn
,
E. M.
, and
Hellenbrand
,
W. E.
,
2011
, “
Stent Fracture, Valve Dysfunction, and Right Ventricular Outflow Tract Reintervention After Transcatheter Pulmonary Valve Implantation: Patient-Related and Procedural Risk Factors in the U.S. Melody Valve Trial
,”
Circ. Cardiovasc. Interventions
,
4
(
6
), pp.
602
614
.
18.
Fleming
,
G.
,
Hill
,
K.
,
Green
,
A.
, and
Rhodes
,
J.
,
2012
, “
Percutaneous Pulmonary Valve Replacement
,”
Prog. Pediatr. Cardiol.
,
33
(
2
), pp.
143
150
.
19.
Ussia
,
G. P.
,
Barbanti
,
M.
,
Petronio
,
A. S.
,
Tarantini
,
G.
,
Ettori
,
F.
,
Colombo
,
A.
,
Violini
,
R.
,
Ramondo
,
A.
,
Santoro
,
G.
,
Klugmann
,
S.
,
Bedogni
,
F.
,
Maisano
,
F.
,
Marzocchi
,
A.
,
Poli
,
A.
,
De Carlo
,
M.
,
Napodano
,
M.
,
Fiorina
,
C.
,
De Marco
,
F.
,
Antoniucci
,
D.
,
de Cillis
,
E.
,
Capodanno
,
D.
, and
Tamburino
,
C.
,
2012
, “
Transcatheter Aortic Valve Implantation: 3-Year Outcomes of Self-Expanding CoreValve Prosthesis
,”
Eur. Heart J.
,
33
(
8
), pp.
969
976
.
20.
Bouleti
,
C.
,
Himbert
,
D.
,
Iung
,
B.
,
Alos
,
B.
,
Kerneis
,
C.
,
Ghodbane
,
W.
,
Messika-Zeitoun
,
D.
,
Brochet
,
E.
,
Fassa
,
A. A.
,
Depoix
,
J. P.
,
Ou
,
P.
,
Nataf
,
P.
, and
Vahanian
,
A.
,
2015
, “
Long-Term Outcome After Transcatheter Aortic Valve Implantation
,”
Heart
,
101
(
12
), pp.
936
942
.
21.
Kovac
,
J.
,
Schuler
,
G.
,
Gerckens
,
U.
,
Müller
,
R.
,
Serruys
,
P. W.
,
Bonan
,
R.
,
Labinaz
,
M.
,
den Heijer
,
P.
,
Mullen
,
M.
,
Tymchak
,
W.
, and
Grube
,
E.
,
2016
, “
Four-Year Experience With the CoreValve Transcatheter Heart Valve
,”
EuroIntervention
,
12
(
8
), pp.
e1039
e1046
.
22.
Arsalan
,
M.
, and
Walther
,
T.
,
2016
, “
Durability of Prostheses for Transcatheter Aortic Valve Implantation
,”
Nat. Rev. Cardiol.
,
13
(
6
), pp.
360
367
.
23.
Padala
,
M.
,
Sarin
,
E.
,
Willis
,
P.
,
Babaliaros
,
V.
,
Block
,
P.
,
Guyton
,
R.
, and
Thourani
,
V.
,
2010
, “
An Engineering Review of Transcatheter Aortic Valve Technologies
,”
Cardiovasc. Eng. Technol.
,
1
(
1
), pp.
77
87
.
24.
Sun
,
W.
,
Sacks
,
M.
,
Fulchiero
,
G.
,
Lovekamp
,
J.
,
Vyavahare
,
N.
, and
Scott
,
M.
,
2004
, “
Response of Heterograft Heart Valve Bio-Materials to Moderate Cyclic Loading
,”
J. Biomed. Mater. Res. Part A
,
69A
(
4
), pp.
658
669
.
25.
Zubiate
,
B.
, and
Sacks
,
M. S.
,
2010
, “
Effects of Cyclic Flexural Fatigue on Porcine Bioprosthetic Heart Valve Heterograft Biomaterials
,”
J. Biomed. Mater. Res. Part A.
,
94A
(
1
), pp.
205
213
.
26.
Cacciola
,
G.
,
Peters
,
G. W. M.
, and
Schreurs
,
P. J. G.
,
2000
, “
A Three-Dimensional Mechanical Analysis of a Stentless Fibre-Reinforced Aortic Valve Prosthesis
,”
J. Biomech.
,
33
(
5
), pp.
521
530
.
27.
Abbasi
,
M.
, and
Azadani
,
A. N.
,
2015
, “
Leaflet Stress and Strain Distributions Following Incomplete Transcatheter Aortic Valve Expansion
,”
J. Biomech.
,
48
(
13
), pp.
3663
3671
.
28.
Martin
,
C.
, and
Sun
,
W.
,
2015
, “
Comparison of Transcatheter Aortic Valve and Surgical Bioprosthetic Valve Durability: A Fatigue Simulation Study
,”
J. Biomech.
,
48
(
12
), pp.
3026
3034
.
29.
Early
,
M.
, and
Kelly
,
D.
,
2011
, “
The Consequences of the Mechanical Environment of Peripheral Arteries for Nitinol Stenting
,”
Med. Biol. Eng. Comput.
,
49
(
11
), pp.
1279
1288
.
30.
Harvey
,
S.
,
2011
, “
Nitinol Stent Fatigue in a Peripheral Human Artery Subjected to Pulsatile and Articulation Loading
,”
J. Mater. Eng. Perform.
,
20
(
4
), pp.
697
705
.
31.
Grujicic
,
M.
,
Pandurangan
,
B.
,
Arakere
,
A.
, and
Snipes
,
J.
,
2012
, “
Fatigue Life Computational Analysis for the Self-Expanding Endovascular Nitinol Stents
,”
J. Mater. Eng. Perform.
,
21
(
11
), pp.
2218
2230
.
32.
Meoli
,
A.
,
Dordoni
,
E.
,
Petrini
,
L.
,
Migliavacca
,
F.
,
Dubini
,
G.
, and
Pennati
,
G.
,
2013
, “
Computational Modeling of In Vitro Set-Ups for Peripheral Self-Expanding Nitinol Stents: The Importance of Stent-Wall Interaction in the Assessment of the Fatigue Resistance
,”
Cardiovasc. Eng. Technol.
,
4
(
4
), pp.
474
484
.
33.
Dordoni
,
E.
,
Meoli
,
A.
,
Wu
,
W.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Pennati
,
G.
, and
Petrini
,
L.
,
2014
, “
Fatigue Behavior of Nitinol Peripheral Stents: The Role of Plaque Shape Studied With Computational Structural Analyses
,”
Med. Eng. Phys.
,
36
(
7
), pp.
842
849
.
34.
Meoli
,
A.
,
Dordoni
,
E.
,
Petrini
,
L.
,
Migliavacca
,
F.
,
Dubini
,
G.
, and
Pennati
,
G.
,
2014
, “
Computational Study of Axial Fatigue for Peripheral Nitinol Stents
,”
J. Mater. Eng. Perform.
,
23
(
7
), pp.
2606
2613
.
35.
Kumar
,
G. P.
,
Cui
,
F.
,
Danpinid
,
A.
,
Su
,
B.
,
Hon
,
J.
, and
Leo
,
H.
,
2013
, “
Design and Finite Element-Based Fatigue Prediction of a New Self-Expandable Percutaneous Mitral Valve Stent
,”
Comput. Aided Des.
,
45
(
10
), pp.
1153
1158
.
36.
Vaesken
,
A.
,
Khoffi
,
F.
,
Heim
,
F.
,
Dieval
,
F.
, and
Chakfe
,
N.
,
2016
, “
Fiber Heart Valve Prosthesis: Early In Vitro Fatigue Results
,”
J. Biomed. Mater. Res. B Appl. Biomater.
,
104
(
5
), pp.
986
992
37.
Yousefi
,
A.
,
Vaesken
,
A.
,
Amri
,
A.
,
Dasi
,
L. P.
, and
Heim
,
F.
,
2016
, “
Heart Valves From Polyester Fibers vs. Biological Tissue: Comparative Study In Vitro
,”
Ann. Biomed. Eng.
(Online).
38.
Bezuidenhout
,
D.
,
Williams
,
D. F.
, and
Zilla
,
P.
,
2015
, “
Polymeric Heart Valves for Surgical Implantation, Catheter-Based Technologies and Heart Assist Devices
,”
Biomaterials
,
36
, pp.
6
25
.
39.
Funakubo
,
H.
,
1987
,
Shape Memory Alloys
,
Gordon and Breach Science Publishers
,
New York
.
40.
Otsuka
,
K.
, and
Wayman
,
C. M.
,
1998
,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, UK
.
41.
Robertson
,
S. W.
, and
Ritchie
,
R. O.
,
2007
, “
In Vitro Fatigue-Crack Growth and Fracture Toughness Behavior of Thin-Walled Superelastic Nitinol Tube for Endovascular Stents: A Basis for Defining the Effect of Crack-Like Defects
,”
Biomaterials
,
28
(
4
), pp.
700
709
.
42.
Petrini
,
L.
,
Wu
,
W.
,
Dordoni
,
E.
,
Meoli
,
A.
,
Migliavacca
,
F.
, and
Pennati
,
G.
,
2012
, “
Fatigue Behavior Characterization of Nitinol for Peripheral Stents
,”
Funct. Mater. Lett.
,
5
(
1
), p.
1250012
.
43.
Auricchio
,
F.
,
Taylor
,
R. L.
, and
Lubliner
,
J.
,
1997
, “
Shape-Memory Alloys: Macromodeling and Numerical Simulations of the Superelastic Behavior
,”
Comput. Methods Appl. Mech. Eng.
,
146
(
1
), pp.
281
312
.
44.
Auricchio
,
F.
,
2001
, “
A Robust Integration-Algorithm for a Finite-Strain Shapememory-Alloy Superelastic Model
,”
Int. J. Plast.
,
17
(
7
), pp.
971
990
.
45.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S.
,
2012
, “
Performance of Self-Expanding Nitinol Stent in a Curved Artery: Impact of Stent Length and Deployment Orientation
,”
ASME J. Biomech. Eng.
,
134
(
7
), p.
071007
.
46.
Azaouzi
,
M.
,
Makradi
,
A.
, and
Belouettar
,
S.
,
2012
, “
Deployment of a Self-Expanding Stent Inside an Artery: A Finite Element Analysis
,”
Mater. Des.
,
41
, pp.
410
420
.
47.
Pelton
,
A.
,
Schroeder
,
V.
,
Mitchell
,
M.
,
Gong
,
X.
,
Barney
,
M.
, and
Robertson
,
S.
,
2008
, “
Fatigue and Durability of Nitinol Stents
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
2
), pp.
153
164
.
48.
Runciman
,
A.
,
Xu
,
D.
,
Pelton
,
A. R.
, and
Ritchie
,
R. O.
,
2011
, “
An Equivalent Strain/Coffin-Manson Approach to Multiaxial Fatigue and Life Prediction in Superelastic Nitinol Medical Devices
,”
Biomaterials
,
32
(
22
), pp.
4987
4993
.
49.
Morgan
,
N. B.
,
Painter
,
J.
, and
Moffat
,
A.
,
2003
, “
Mean Strain Effects and Microstructural Observations During In Vitro Fatigue Testing of NiTi
,”
SMST-2003: Proceedings of the International Conference on Shape Memory and Superelastic Technologies
, A. R. Pelton and T. W. Duerig, eds., International Organization on SMST, Pacific Grove, CA, pp.
303
310
.
50.
Robertson
,
S. W.
,
Pelton
,
A. R.
, and
Ritchie
,
R. O.
,
2012
, “
Mechanical Fatigue and Fracture of Nitinol
,”
Int. Mater. Rev.
,
57
(
1
), pp.
1
36
.
You do not currently have access to this content.