This paper describes the use of analytical methods to determine machinable centrifugal impeller geometries and the use of computational fluid dynamics (CFD) for predicting the impeller performance. An analytical scheme is described to determine the machinable geometries for a shrouded centrifugal impeller with blades composed of equiangular spirals. The scheme is used to determine the maximum machinable blade angles for impellers with three to nine blades in a case study. Computational fluid dynamics is then used to analyze all the machinable geometries and determine the optimal blade number and angle based on measures of efficiency and rotor speed. The effect of tip width on rotor speed and efficiency is also examined. It is found that, for our case study, a six- or seven-bladed impeller with a low blade angle provides maximum efficiency and minimum rotor speed.

References

References
1.
Lloyd
,
J.
,
2011
, “
Heart Disease and Stroke Statistics—2009 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
,
124
(
16
), p.
424
.
2.
Griffith
,
B.
,
Kormos
,
R.
,
Borovetz
,
H.
,
Litwak
,
K.
,
Antaki
,
J.
,
Poirier
,
V.
, and
Butler
,
K.
,
2001
, “
HeartMate II Left Ventricular Assist System: From Concept to First Clinical Use
,”
Ann. Thorac. Surg.
,
71
(
3
), pp.
S116
S120
.
3.
Christiansen
,
C.
,
Klocke
,
A.
, and
Autschbach
,
R.
,
2008
, “
Past, Present, and Future of Long-Term Mechanical Cardiac Support in Adults
,”
J. Card. Surg.
,
23
(
6
), pp.
664
676
.
4.
Bourque
,
K.
,
Gernes
,
D. B.
,
Loree
,
H. M.
,
Richardson
,
J. S.
,
Poirier
,
V. L.
,
Barletta
,
N.
,
Fleischli
,
A.
,
Foiera
,
G.
,
Gempp
,
T. M.
, and
Schoeb
,
R.
,
2001
, “
HeartMate III: Pump Design for a Centrifugal LVAD With a Magnetically Levitated Rotor
,”
ASAIO J.
,
47
(
4
), pp.
401
405
.
5.
Wood
,
C.
,
Maiorana
,
A.
,
Larbalestier
,
R.
,
Lovett
,
M.
,
Green
,
G.
, and
O'Driscoll
,
G.
,
2008
, “
First Successful Bridge to Myocardial Recovery With a HeartWare HVAD
,”
J. Heart Lung Transplant.
,
27
(
6
), pp.
695
697
.
6.
Hoshi
,
H.
,
Shinshi
,
T.
, and
Takatani
,
S.
,
2006
, “
Third-Generation Blood Pumps With Mechanical Noncontact Magnetic Bearings
,”
Artif. Organs
,
30
(
5
), pp.
324
338
.
7.
Yamazaki
,
K.
,
Kihara
,
S.
,
Akimoto
,
T.
,
Tagusari
,
O.
,
Kawai
,
A.
, and
Umezu
,
M.
,
2007
, “
EVAHEART™: An Implantable Centrifugal Blood Pump for Long-Term Circulatory Support
,”
Jpn. J. Thorac. Cardiovasc. Surg.
,
50
(
11
), pp.
461
465
.
8.
Molteni
,
A.
,
Fraser
,
K.
,
Yousef
,
H.
,
Low
,
K.
,
Rolland
,
S.
, and
Foster
,
G.
,
2014
, “
Development, Validation and Use of a CFD Model for Iterative Design Improvement of the Calon MiniVAD
,”
Int. J. Artif. Organs
,
37
(
8
), pp.
586
587
.
9.
Fan
,
Y.
,
Tansley
,
G.
,
Fan
,
H.
, and
Niu
,
J.
,
2011
, “
The Application of Laser Welding on Left Ventricular Assist Device (LVAD)
,”
Symposium on Photonics and Optoelectronics
(
SOPO
), Wuhan, China, May 16–18.
10.
Olin
,
C.
,
2001
, “
Titanium in Cardiac and Cardiovascular Applications
,”
Titanium in Medicine
,
Springer
,
Heidelberg
, p.
889
.
11.
Taskin
,
M.
,
Zhang
,
T.
,
Fraser
,
K.
,
Griffith
,
B.
, and
Wu
,
J.
,
2012
, “
Design Optimization of a Wearable Artificial Pump-Lung Device With Computational Modeling
,”
ASME J. Med. Devices
,
6
(
3
), p.
031009
.
12.
Wu
,
J. Z.
,
Antaki
,
J.
,
Verkaik
,
J.
,
Snyder
,
S.
, and
Ricci
,
M.
,
2012
, “
Computational Fluid Dynamics-Based Design Optimization for an Implantable Miniature Maglev Pediatric Ventricular Assist Device
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041101
.
13.
Korakianitis
,
T.
,
Rezaienia
,
M. A.
,
Paul
,
G.
,
Rahideh
,
A.
,
Rothman
,
M.
, and
Mozafari
,
S.
,
2016
, “
Optimization of Centrifugal Pump Characteristic Dimensions for Mechanical Circulatory Support Devices
,”
ASAIO J.
,
62
(
5
), pp.
545
551
.
14.
Mozafari
,
S.
,
Rezaienia
,
M. A.
,
Paul
,
G.
,
Rothman
,
M.
,
Wen
,
P.
, and
Korakianitis
,
T.
,
2016
, “
The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps
,”
ASAIO J.
,
63
(
1
), pp.
53
59
.
15.
Korakianitis
,
T.
,
Rezaienia
,
M.
,
Hamakhan
,
I.
, and
Wheeler
,
P.
,
2013
, “
Two- and Three-Dimensional Prescribed Surface Curvature Distribution Blade Design (CIRCLE) Method for the Design of High Efficiency Turbines, Compressors, and Isolated Airfoils
,”
ASME J. Turbomach.
,
135
(
4
), p.
041002
.
16.
Shen
,
X.
,
Avital
,
E.
,
Rezaienia
,
M. A.
,
Paul
,
G.
, and
Korakianitis
,
T.
,
2006
, “
Computational Methods for Investigation of Surface Curvature Effects on Airfoil Boundary Layer Behavior
,”
J. Algorithms Comput. Technol.
,
11
(
1
), pp.
68
82
.
17.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Gellman
,
B.
,
Fleischli
,
A.
,
Dasse
,
K. A.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2010
, “
Computational Characterization of Flow and Hemolytic Performance of the UltraMag Blood Pump for Circulatory Support
,”
Artif. Organs
,
34
(
12
), pp.
1099
1113
.
18.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Wu
,
C.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation
,”
ASAIO J.
,
58
(
4
), pp.
363
372
.
19.
Fraser
,
K.
,
Zhang
,
T.
,
Taskin
,
M.
,
Griffith
,
B.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081002
.
20.
Ishii
,
K.
,
Hosoda
,
K.
,
Isoyama
,
T.
,
Saito
,
I.
,
Ariyoshi
,
K.
,
Inoue
,
Y.
,
Sato
,
M.
,
Hara
,
S.
,
Lee
,
X.
,
Wu
,
S. Y.
, and
Ono
,
T.
,
2013
, “
Pulsatile Driving of the Helical Flow Pump
,”
35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Osaka, Japan, July 3–7, pp.
2724
2727
.
21.
Fraser
,
K. H.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2011
, “
The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices
,”
Med. Eng. Phys.
,
33
(
3
), pp.
263
280
.
22.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.
23.
Thamsen
,
B.
,
Blümel
,
B.
,
Schaller
,
J.
,
Paschereit
,
C. O.
,
Affeld
,
K.
,
Goubergrits
,
L.
, and
Kertzscher
,
U.
,
2015
, “
Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps
,”
Artif. Organs
,
39
(
8
), pp.
651
659
.
24.
Paul
,
G.
,
Rezaienia
,
M. A.
,
Rahideh
,
A.
,
Munjiza
,
A.
, and
Korakianitis
,
T.
,
2016
, “
The Effects of Ambulatory Accelerations on the Stability of a Magnetically Suspended Impeller for an Implantable Blood Pump
,”
Artif. Organs
,
40
(
9
), pp.
867
876
.
25.
Timms
,
D.
,
Hayne
,
M.
,
Tan
,
A.
, and
Pearcy
,
M.
,
2005
, “
Evaluation of Left Ventricular Assist Device Performance and Hydraulic Force in a Complete Mock Circulation Loop
,”
Artif. Organs
,
29
(
7
), pp.
573
580
.
26.
Rezaienia
,
M. A.
,
Paul
,
G.
,
Avital
,
E.
,
Rahideh
,
A.
,
Rothman
,
M.
, and
Korakianitis
,
T.
,
2016
, “
In-Vitro Investigation of Cerebral-Perfusion Effects of a Rotary Blood Pump Installed in the Descending Aorta
,”
J. Biomech.
,
49
(
9
), pp.
1865
1872
.
You do not currently have access to this content.