Endovascular aneurysm repair (EVAR) is a clinically effective technique for treating anatomically eligible abdominal aortic aneurysms (AAAs), involving the deployment of an endograft (EG) that is designed to prevent blood leakage in the aneurysmal sac. While most EGs have equivalent operating principles, the hemodynamic environment established by different EGs is not necessarily the same. So, to unveil the post-EVAR hemodynamic properties, we need an EG-specific computational approach that currently lacks from the literature. Endurant and Excluder are two EGs with similar pre-installation designs. We assumed that the flow conditions in the particular EGs do not vary significantly. The hypothesis was tested combining image reconstructions, computational fluid dynamics (CFD), and statistics, taking into account the postimplantation position of the EGs. Ten patients with Endurant EGs and ten patients with Excluder EGs were included in this study. The two groups were matched with respect to the preoperative morphological characteristics of the AAAs. The EG models are derived from image reconstructions of postoperative computed tomography scans. Wall shear stress (WSS), displacement force, velocity, and helicity were calculated in regions of interest within the EG structures, i.e., the main body, the upper and lower part of the limbs. Excluder generated higher WSS compared to Endurant, especially on the lower part of the limbs (p = 0.001). Spatial fluctuations of WSS were observed on the upper part of the Excluder limbs. Higher blood velocity was induced by Excluder in all the regions of interest (p = 0.04, p = 0.01, and p = 0.004). Focal points of secondary flow were detected in the main body of Endurant and the limbs of Excluder. The displacement force acting on the lower part of the Excluder limbs was stronger compared to the Endurant one (p = 0.03). The results showed that two similar EGs implanted in similar AAAs can induce significantly different flow properties. The delineation of the hemodynamic features associated with the various commercially available EGs could further promote the personalization of treatment offered to aneurysmal patients and inspire ideas for the improvement of EG designs in the future.

References

References
1.
Propper
,
B. W.
, and
Abularrage
,
C. J.
,
2013
, “
Long-Term Safety and Efficacy of Endovascular Abdominal Aortic Aneurysm Repair
,”
Vasc. Health Risk Manage.
,
2013
(
9
), pp.
135
141
.
2.
Van Marrewijk
,
C. J.
,
Leurs
,
L. J.
,
Vallabhaneni
,
S. R.
,
Harris
,
P. L.
,
Buth
,
J.
, and
Laheij
,
R. J. F.
,
2005
, “
Risk-Adjusted Outcome Analysis of Endovascular Abdominal Aortic Aneurysm Repair in a Large Population: How Do Stent-Grafts Compare?
J. Endovasc. Ther.
,
12
(
4
), pp.
417
429
.
3.
Desai
,
M.
,
Eaton-Evans
,
J.
,
Hillery
,
C.
,
Bakhshi
,
R.
,
You
,
Z.
,
Lu
,
J.
,
Hamilton
,
G.
, and
Seifalian
,
A. M.
,
2010
, “
AAA Stent-Grafts: Past Problems and Future Prospects
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1259
1275
.
4.
Corbett
,
T. J.
,
Callanan
,
A.
,
Morris
,
L. G.
,
Doyle
,
B. J.
,
Grace
,
P. A.
,
Kavanagh
,
E. G.
, and
McGloughlin
,
T. M.
,
2008
, “
A Review of the In Vivo and In Vitro Biomechanical Behavior and Performance of Postoperative Abdominal Aortic Aneurysms and Implanted Stent-Grafts
,”
J. Endovasc. Ther.
,
15
(
4
), pp.
468
484
.
5.
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2009
, “
Endovascular Device Design in the Future: Transformation From Trial and Error to Computational Design
,”
J. Endovasc. Ther.
,
16
(
1 Suppl.
), pp.
12
21
.
6.
Walsh
,
P. W.
,
Chin-Quee
,
S.
, and
Moore
,
J. E.
,
2003
, “
Flow Changes in the Aorta Associated With the Deployment of a AAA Stent Graft
,”
Med. Eng. Phys.
,
25
(
4
), pp.
299
307
.
7.
Figueroa
,
C. A.
,
Taylor
,
C. A.
,
Yeh
,
V.
,
Chiou
,
A. J.
,
Gorrepati
,
M. L.
, and
Zarins
,
C. K.
,
2010
, “
Preliminary 3D Computational Analysis of the Relationship Between Aortic Displacement Force and Direction of Endograft Movement
,”
J. Vasc. Surg.
,
51
(
6
), pp.
1488
1497
.
8.
Molony
,
D. S.
,
Kavanagh
,
E. G.
,
Madhavan
,
P.
,
Walsh
,
M. T.
, and
McGloughlin
,
T. M.
,
2010
, “
A Computational Study of the Magnitude and Direction of Migration Forces in Patient-Specific Abdominal Aortic Aneurysm Stent-Grafts
,”
Eur. J. Vasc. Endovasc. Surg.
,
40
(
3
), pp.
332
339
.
9.
Polanczyk
,
A.
,
Podyma
,
M.
,
Stefanczyk
,
L.
,
Szubert
,
W.
, and
Zbicinski
,
I.
,
2015
, “
A 3D Model of Thrombus Formation in a Stent-Graft After Implantation in the Abdominal Aorta
,”
J. Biomech.
,
48
(
3
), pp.
425
431
.
10.
Vardoulis
,
O.
,
Coppens
,
E.
,
Martin
,
B.
,
Reymond
,
P.
,
Tozzi
,
P.
, and
Stergiopulos
,
N.
,
2011
, “
Impact of Aortic Grafts on Arterial Pressure: A Computational Fluid Dynamics Study
,”
Eur. J. Vasc. Endovasc. Surg.
,
42
(
5
), pp.
704
710
.
11.
Morris
,
L.
,
Stefanov
,
F.
, and
McGloughlin
,
T.
,
2013
, “
Stent Graft Performance in the Treatment of Abdominal Aortic Aneurysms: The Influence of Compliance and Geometry
,”
J. Biomech.
,
46
(
2
), pp.
383
395
.
12.
Molony
,
D. S.
,
Callanan
,
A.
,
Morris
,
L. G.
,
Doyle
,
B. J.
,
Walsh
,
M. T.
, and
McGloughlin
,
T. M.
,
2008
, “
Geometrical Enhancements for Abdominal Aortic Stent-Grafts
,”
J. Endovasc. Ther.
,
15
(
5
), pp.
518
529
.
13.
Anton
,
R.
,
Chen
,
C. Y.
,
Hung
,
M. Y.
,
Finol
,
E. A.
, and
Pekkan
,
K.
,
2015
, “
Experimental and Computational Investigation of the Patient-Specific Abdominal Aortic Aneurysm Pressure Field
,”
Comput. Methods Biomec.
,
18
(
9
), pp.
981
992
.
14.
Kung
,
E. O.
,
Les
,
A. S.
,
Figueroa
,
A. C.
,
Medina
,
F.
,
Arcaute
,
K.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1947
1960
.
15.
Xenos
,
M.
,
Labropoulos
,
N.
,
Rambhia
,
S.
,
Alemu
,
Y.
,
Einav
,
S.
,
Tassiopoulos
,
A.
,
Sakalihasan
,
N.
, and
Bluestein
,
D.
,
2015
, “
Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid-Structure Interaction Method
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
139
153
.
16.
Stefanov
,
F.
,
McGloughlin
,
T.
,
Delassus
,
P.
, and
Morris
,
L.
,
2013
, “
Hemodynamic Variations Due to Spiral Blood Flow Through Four Patient-Specific Bifurcated Stent Graft Configurations for the Treatment of Abdominal Aortic Aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
2
), pp.
179
196
.
17.
Fung
,
G. S. K.
,
Lam
,
S. K.
,
Cheng
,
S. W. K.
, and
Chow
,
K. W.
,
2008
, “
On Stent-Graft Models in Thoracic Aortic Endovascular Repair: A Computational Investigation of the Hemodynamic Factors
,”
Comput. Biol. Med.
,
38
(
4
), pp.
484
489
.
18.
Polanczyk
,
A.
,
Podyma
,
M.
,
Stefanczyk
,
L.
, and
Zbicinski
,
I.
,
2012
, “
Effects of Stent-Graft Geometry and Blood Hematocrit on Hemodynamic in Abdominal Aortic Aneurysm
,”
Chem. Process. Eng.
,
33
(
1
), pp.
53
61
.
19.
Polanczyk
,
A.
,
Podyma
,
M.
,
Trebinski
,
L.
,
Chrzastek
,
J.
,
Zbicinski
,
I.
, and
Stefanczyk
,
L.
,
2016
, “
A Novel Attempt to Standardize Results of CFD Simulations Basing on Spatial Configuration of Aortic Stent-Grafts
,”
PLoS One
,
11
(
4
), p.
e0153332
.
20.
Raptis
,
A.
,
Xenos
,
M.
,
Georgakarakos
,
E.
,
Kouvelos
,
G.
,
Giannoukas
,
A.
,
Labropoulos
,
N.
, and
Matsagkas
,
M.
,
2016
, “
Comparison of Physiological and Post-Endovascular Aneurysm Repair Infrarenal Blood Flow
,”
Comput. Methods Biomech.
, (epub).
21.
Peterson
,
B. G.
,
Matsumura
,
J. S.
,
Brewster
,
D. C.
,
Makaroun
,
M. S.
, and
Excluder Bifurcated Endoprosthesis Investigators
,
2007
, “
Five-Year Report of a Multicenter Controlled Clinical Trial of Open Versus Endovascular Treatment of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
45
(
5
), pp.
885
890
.
22.
Pratesi
,
C.
,
Piffaretti
,
G.
,
Pratesi
,
G.
,
Castelli
,
P.
, and
Inestigators
,
I. E.
,
2014
, “
Italian Excluder Registry and Results of Gore Excluder Endograft for the Treatment of Elective Infrarenal Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
59
(
1
), pp.
52
57
.
23.
Maleux
,
G.
,
Claes
,
H.
,
Van Holsbeeck
,
A.
,
Janssen
,
R.
,
Laenen
,
A.
,
Heye
,
S.
,
Houthoofd
,
S.
, and
Fourneau
,
I.
,
2012
, “
Ten Years of Experience With the GORE EXCLUDER(R) Stent-Graft for the Treatment of Aortic and Iliac Aneurysms: Outcomes From a Single Center Study
,”
Cardiovasc. Intervent. Radiol.
,
35
(
3
), pp.
498
507
.
24.
Bockler
,
D.
,
Riambau
,
V.
,
Fitridge
,
R.
,
Wolf
,
Y.
,
Hayes
,
P.
,
Silveira
,
P. G.
,
Numan
,
F.
, and
Investigators
,
E.
,
2011
, “
Worldwide Experience With the Endurant Stent-Graft System: Review of the Literature
,”
J. Cardiovasc. Surg.
,
52
(
5
), pp.
669
681
.
25.
Makaroun
,
M. S.
,
Tuchek
,
M.
,
Massop
,
D.
,
Henretta
,
J.
,
Rhee
,
R.
,
Buckley
,
C.
,
Mehta
,
M.
,
Ellozy
,
S.
, and
Endurant US Pivotal Trial Investigators
,
2011
, “
One Year Outcomes of the United States Regulatory Trial of the Endurant Stent Graft System
,”
J. Vasc. Surg.
,
54
(
3
), pp.
601
608
.
26.
Eckroth-Bernard
,
K.
,
Garvin
,
R.
, and
Ryer
,
E.
,
2013
, “
Current Status of Endovascular Devices to Treat Abdominal Aortic Aneurysms
,”
Biomed. Eng. Comput. Biol.
,
2013
(
5
), pp.
25
32
.
27.
Kandail
,
H.
,
Hamady
,
M.
, and
Xu
,
X. Y.
,
2014
, “
Patient-Specific Analysis of Displacement Forces Acting on Fenestrated Stent Grafts for Endovascular Aneurysm Repair
,”
J. Biomech.
,
47
(
14
), pp.
3546
3554
.
28.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
,
2000
, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
(
11
), pp.
1281
1299
.
29.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2011
, “
Mechanistic Insight Into the Physiological Relevance of Helical Blood Flow in the Human Aorta: An In Vivo Study
,”
Biomech. Model. Mechanobiol.
,
10
(
3
), pp.
339
355
.
30.
Biasetti
,
J.
,
Hussain
,
F.
, and
Gasser
,
T. C.
,
2011
, “
Blood Flow and Coherent Vortices in the Normal and Aneurysmatic Aortas: A Fluid Dynamical Approach to Intraluminal Thrombus Formation
,”
J. R. Soc. Interface
,
8
(
63
), pp.
1449
1461
.
31.
Roy
,
D.
,
Kauffmann
,
C.
,
Delorme
,
S.
,
Lerouge
,
S.
,
Cloutier
,
G.
, and
Soulez
,
G.
,
2012
, “
A Literature Review of the Numerical Analysis of Abdominal Aortic Aneurysms Treated With Endovascular Stent Grafts
,”
Comput. Math. Methods Med.
,
2012
(
2012
), p.
820389
.
32.
Chung
,
B.
, and
Cebral
,
J. R.
,
2015
, “
CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
122
138
.
33.
Georgakarakos
,
E.
,
Ioannou
,
C. V.
,
Kamarianakis
,
Y.
,
Papaharilaou
,
Y.
,
Kostas
,
T.
,
Manousaki
,
E.
, and
Katsamouris
,
A. N.
,
2010
, “
The Role of Geometric Parameters in the Prediction of Abdominal Aortic Aneurysm Wall Stress
,”
Eur. J. Vasc. Endovasc. Surg.
,
39
(
1
), pp.
42
48
.
34.
Biasetti
,
J.
,
Gasser
,
T. C.
,
Auer
,
M.
,
Hedin
,
U.
, and
Labruto
,
F.
,
2010
, “
Hemodynamics of the Normal Aorta Compared to Fusiform and Saccular Abdominal Aortic Aneurysms With Emphasis on a Potential Thrombus Formation Mechanism
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
380
390
.
35.
Basciano
,
C.
,
Kleinstreuer
,
C.
,
Hyun
,
S.
, and
Finol
,
E. A.
,
2011
, “
A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
2010
2026
.
36.
Liu
,
X.
,
Sun
,
A.
,
Fan
,
Y.
, and
Deng
,
X.
,
2015
, “
Physiological Significance of Helical Flow in the Arterial System and Its Potential Clinical Applications
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
3
15
.
37.
Biasetti
,
J.
,
Spazzini
,
P.
,
Hedin
,
U.
, and
Gasser
,
C. T.
,
2014
, “
Synergy Between Shear-Induced Migration and Secondary Flows on Red Blood Cells Transport in Arteries: Considerations on Oxygen Transport
,”
J. R. Soc. Interface
,
11
(
97
), p.
20140403
.
38.
Oliveira
,
N. F. G.
,
Goncalves
,
F. M. B.
,
Hoeks
,
S. E.
,
Ten Raa
,
S.
,
Ultee
,
K. H. J.
,
Rouwet
,
E.
,
Hendriks
,
J. M.
, and
Verhagen
,
H. J. M.
,
2015
, “
Clinical Outcome and Morphologic Determinants of Mural Thrombus in Abdominal Aortic Endografts
,”
J. Vasc. Surg.
,
61
(
6
), pp.
1391
1398
.
39.
Figueroa
,
C. A.
,
Taylor
,
C. A.
,
Yeh
,
V.
,
Chiou
,
A. J.
, and
Zarins
,
C. K.
,
2009
, “
Effect of Curvature on Displacement Forces Acting on Aortic Endografts: A 3-Dimensional Computational Analysis
,”
J. Endovasc. Ther.
,
16
(
3
), pp.
284
294
.
You do not currently have access to this content.