Stroke is one of the leading causes of adult physical disability, and rehabilitation and hospitalization costs for stroke are among the highest for all injuries. Current rehabilitation techniques are labor intensive and time consuming for therapists and difficult to perform effectively. Research suggests that starting rehabilitation during the acute or subacute stage of recovery results in better outcomes than therapy delivered in the chronic stage. To improve the gait rehabilitation process, robot-assisted gait rehabilitation has gained much interest over the past years. However, many robot-assisted rehabilitation devices have limitations; one of which is being bulky and complex to handle. Large and expensive devices that require special training to operate are less attractive to clinics and therapists, and ultimately less likely to be available to patients especially at the early stage of stroke. To address these limitations, this research proposes a new gait rehabilitation device called the linkage design gait trainer (LGT). The device is based on a walking frame design with a simple four-bar linkage “end-effector” mechanism to generate normal gait trajectories during general walking and exercise. The design of the four-bar linkage mechanism was optimized for a particular gait pattern. A prototype of the device was developed and tested. The kinematics of the device itself and gait kinematics with and without assistance from the device were recorded and analyzed using an optical motion capture system. The results show the linkage mechanism is able to guide the leg of the user during over ground walking. There were some differences in the hip (20.5 deg RMS) and knee (14.8 deg RMS) trajectory between the person walking with and without the device assistance. The study demonstrated the concept and feasibility of this novel gait training device.

References

References
1.
American Stroke Association
,
2014
, “
Patient Education Handout
,”
American Stroke Association
,
Dallas, TX
.
2.
Stroke Foundation of New Zealand
,
2013
, “
Life After Stroke
,” 2nd ed.,
Stroke Foundation of New Zealand
,
Wellington, New Zealand
.
3.
Flansbjer
,
U.-B.
,
Holmbäck
,
A. M.
,
Downham
,
D.
,
Patten
,
C.
, and
Lexell
,
J.
,
2005
, “
Reliability of Gait Performance Tests in Men and Women With Hemiparesis After Stroke
,”
J. Rehabil. Med.
,
37
(
2
), pp.
75
82
.
4.
Preston
,
E.
,
Ada
,
L.
,
Dean
,
C. M.
,
Stanton
,
R.
, and
Waddington
,
G.
,
2011
, “
What is the Probability of Patients Who Are Nonambulatory After Stroke Regaining Independent Walking? A Systematic Review
,”
Int. J. Stroke
,
6
(
6
), pp.
531
540
.
5.
Mehrholz
,
J.
,
Elsner
,
B.
,
Werner
,
C.
,
Kugler
,
J.
, and
Pohl
,
M.
,
2013
, “
Electromechanical-Assisted Training for Walking After Stroke
,”
Cochrane Database Syst. Rev.
, (7), Art. No. CD006185.
6.
Fuzaro
,
A. C.
,
Guerreiro
,
C. T.
,
Galetti
,
F. C.
,
Jucá
,
R. B. V. M.
, and
de Araujo
,
J. E.
,
2012
, “
Modified Constraint-Induced Movement Therapy and Modified Forced-Use Therapy for Stroke Patients Are Both Effective to Promote Balance and Gait Improvements
,”
Braz. J. Phys. Ther.
,
16
(
2
), pp.
157
165
.
7.
Zipp
,
G. P.
, and
Winning
,
S.
,
2012
, “
Effects of Constraint-Induced Movement Therapy on Gait, Balance, and Functional Locomotor Mobility
,”
Pediatric Phys. Ther.
,
24
(
1
), pp.
64
68
.
8.
Jezernik
,
S.
,
Colombo
,
G.
, and
Morari
,
M.
,
2004
, “
Automatic Gait-Pattern Adaptation Algorithms for Rehabilitation With a 4-DOF Robotic Orthosis
,”
IEEE Trans. Rob. Autom.
,
20
(
3
), pp.
574
582
.
9.
Veneman
,
J.
,
Kruidhof
,
R.
,
Hekman
,
E.
,
Ekkelenkamp
,
R.
,
van Asseldonk
,
E.
, and
van der Kooij
,
H.
,
2007
, “
Design and Evaluation of the Lopes Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.
10.
West
,
R.
,
2004
, “
Powered Gait Orthosis and Method of Utilizing Same
,”
U.S. Patent 6,689,075
.https://www.google.com/patents/US6689075
11.
Yamawaki
,
K.
,
Ariyasu
,
R.
,
Kubota
,
S.
,
Kawamoto
,
H.
,
Nakata
,
Y.
,
Kamibayashi
,
K.
,
Sankai
,
Y.
,
Eguchi
,
K.
, and
Ochiai
,
N.
,
2012
, “
Application of Robot Suit Hal to Gait Rehabilitation of Stroke Patients: A Case Study
,”
Computers Helping People With Special Needs
(Lecture Notes in Computer Science),
K.
Miesenberger
,
A.
Karshmer
,
P.
Penaz
, and
W.
Zagler
, eds., Vol.
7383
,
Springer
Berlin Heidelberg
, pp.
184
187
.
12.
Hesse
,
S.
, and
Uhlenbrock
,
D.
,
2000
, “
A Mechanized Gait Trainer for Restoration of Gait
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
701
708
.http://www.rehab.research.va.gov/jour/00/37/6/pdf/hesse.pdf
13.
Hesse
,
S.
,
Sarkodie-Gyan
,
T.
, and
Uhlenbrock
,
D.
,
1999
, “
Development of an Advanced Mechanised Gait Trainer, Controlling Movement of the Centre of Mass, for Restoring Gait in Non-Ambulant Subjects-Weiterentwicklung Eines Mechanisierten Gangtrainers mit Steuerung des Massenschwerpunktes zur Gangrehabilitation Rollstuhlpflichtiger Patienten
,”
Biomedizinische Technik/Biomedical Engineering
,
44
(
7–8
), pp.
194
201
.
14.
Freivogel
,
S.
,
Schmalohr
,
D.
, and
Mehrholz
,
J.
,
2009
, “
Improved Walking Ability and Reduced Therapeutic Stress With an Electromechanical Gait Device
,”
J. Rehabil. Med.
,
41
(
9
), pp.
734
739
.
15.
Schmidt
,
H.
,
Hesse
,
S.
,
Bernhardt
,
R.
, and
Krüger
,
J.
,
2005
, “
Hapticwalker—A Novel Haptic Foot Device
,”
ACM Trans. Appl. Percept.
,
2
(
2
), pp.
166
180
.
16.
Hesse
,
S.
,
Waldner
,
A.
, and
Tomelleri
,
C.
,
2010
, “
Research Innovative Gait Robot for the Repetitive Practice of Floor Walking and Stair Climbing Up and Down in Stroke Patients
,”
J. Neuroeng. Rehabil.
,
7
(
1
), p.
30
.
17.
Tomelleri
,
C.
,
Waldner
,
A.
,
Werner
,
C.
, and
Hesse
,
S.
,
2011
, “
Adaptive Locomotor Training on an End-Effector Gait Robot: Evaluation of the Ground Reaction Forces in Different Training Conditions
,”
2011 IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Zurich, Switzerland, June 29–July 1, pp.
1
5
.
18.
Shyu
,
J. H.
,
Chen
,
C. K.
,
Yu
,
C. C.
, and
Luo
,
Y. J.
,
2011
, “
Research and Development of an Adjustable Elliptical Exerciser
,”
Advanced Design Technology (Advanced Materials Research), ADME 2011
, Vol.
308
,
Trans Tech Publications
,
Pfaffikon, Switzerland
, pp.
2078
2083
.
19.
Nelson
,
C. A.
,
Burnfield
,
J. M.
,
Shu
,
Y.
,
Buster
,
T. W.
,
Taylor
,
A. P.
, and
Graham
,
A.
,
2011
, “
Modified Elliptical Machine Motor-Drive Design for Assistive Gait Rehabilitation
,”
ASME J. Med. Devices
,
5
(
2
), p.
021001
.
20.
Mehrholz
,
J.
, and
Pohl
,
M.
,
2012
, “
Electromechanical-Assisted Gait Training After Stroke: A Systematic Review Comparing End-Effector and Exoskeleton Devices
,”
J. Rehabil. Med.
,
44
(
3
), pp.
193
199
.
21.
Cheng
,
P.-Y.
, and
Lai
,
P.-Y.
,
2013
, “
Comparison of Exoskeleton Robots and End-Effector Robots on Training Methods and Gait Biomechanics
,”
Intelligent Robotics and Applications
(Lecture Notes in Computer Science),
J.
Lee
,
M.
Lee
,
H.
Liu
, and
J.-H.
Ryu
, eds., Vol.
8102
,
Springer
Berlin Heidelberg
, pp.
258
266
.
22.
Hesse
,
S.
,
Schattat
,
N.
,
Mehrholz
,
J.
, and
Werner
,
C.
,
2013
, “
Evidence of End-Effector Based Gait Machines in Gait Rehabilitation After CNS Lesion
,”
NeuroRehabilitation
,
33
(
1
), pp.
77
84
.
23.
Dimyan
,
M. A.
, and
Cohen
,
L. G.
,
2011
, “
Neuroplasticity in the Context of Motor Rehabilitation After Stroke
,”
Nat. Rev. Neurol.
,
7
(
2
), pp.
76
85
.
24.
Langhorne
,
P.
, and
Pollock
,
A.
,
2002
, “
What are the Components of Effective Stroke Unit Care?
,”
Age Ageing
,
31
(
5
), pp.
365
371
.
25.
Indredavik
,
B.
,
Bakke
,
F.
,
Slørdahl
,
S.
,
Rokseth
,
R.
, and
Håheim
,
L.
,
1999
, “
Treatment in a Combined Acute and Rehabilitation Stroke Unit Which Aspects are Most Important?
,”
Stroke
,
30
(
5
), pp.
917
923
.
26.
Bernhardt
,
J.
,
Thuy
,
M. N.
,
Collier
,
J. M.
, and
Legg
,
L. A.
,
2009
, “
Very Early Versus Delayed Mobilisation After Stroke
,”
Cochrane Database Syst. Rev.
, (
1
), Art. No.: CD006187.
27.
Cumming
,
T. B.
,
Collier
,
J.
,
Thrift
,
A. G.
, and
Bernhardt
,
J.
,
2008
, “
The Effect of Very Early Mobilization After Stroke on Psychological Well-Being
,”
Jof Rehabil. Med.
,
40
(
8
), pp.
609
614
.
28.
Stroke Foundation of New Zealand, and New Zealand Guidelines Group
,
2010
, “
New Zealand Clinical Guidelines for Stroke Management 2010
,”
Stroke Foundation of New Zealand
, Wellington, New Zealand.http://www.stroke.org.nz/resources/NZClinicalGuidelinesStrokeManagement2010ActiveContents.pdf
29.
Langhorne
,
P.
,
Stott
,
D.
,
Knight
,
A.
,
Bernhardt
,
J.
,
Barer
,
D.
, and
Watkins
,
C.
,
2010
, “
Very Early Rehabilitation or Intensive Telemetry After Stroke: A Pilot Randomised Trial
,”
Cerebrovasc. Dis.
,
29
(
4
), pp.
352
360
.
30.
Hornby
,
T. G.
,
Campbell
,
D. D.
,
Kahn
,
J. H.
,
Demott
,
T.
,
Moore
,
J. L.
, and
Roth
,
H. R.
,
2008
, “
Enhanced Gait-Related Improvements After Therapist—Versus Robotic-Assisted Locomotor Training in Subjects With Chronic Stroke: A Randomized Controlled Study
,”
Stroke
,
39
(
6
), pp.
1786
1792
.
31.
United States Bureau of the Census
,
1993
, “
Statistical Abstract United States
,” 113 ed., Vol. 8,
United States Bureau of the Census
, Washington, DC.http://www2.census.gov/library/publications/1993/compendia/statab/113ed/1993-01.pdf
32.
Park
,
E. S.
,
Park
,
C. I.
, and
Kim
,
J. Y.
,
2001
, “
Comparison of Anterior and Posterior Walkers With Respect to Gait Parameters and Energy Expenditure of Children With Spastic Diplegic Cerebral Palsy
,”
Yonsei Med. J.
,
42
(
2
), pp.
180
184
.
33.
Bruggeman
,
H.
,
Zosh
,
W.
, and
Warren
,
W.
,
2007
, “
Optic Flow Drives Human Visuo-Locomotor Adaptation
,”
Current Biol.
,
17
(
23
), pp.
2035
2040
.
34.
Nelson
,
C.
,
Stolle
,
C.
,
Burnfield
,
J.
, and
Buster
,
T.
,
2015
, “
Synthesis of a Rehabilitation Mechanism Replicating Normal Gait
,”
14th IFToMM World Congress
, Taipei, Taiwan, Oct. 25–30, pp. 71–78.
35.
Ji
,
Z.
, and
Manna
,
Y.
,
2008
, “
Synthesis of a Pattern Generation Mechanism for Gait Rehabilitation
,”
ASME J. Med. Dev.
,
2
(
3
), p.
031004
.
36.
Perry
,
J.
, and
Burnfield
,
M. B.
,
2010
,
Gait Analysis: Normal and Pathological Function
, 2nd ed.,
Slack Incorporated
,
Thorofare, NJ
.
37.
Ferrari
,
A.
,
Benedetti
,
M. G.
,
Pavan
,
E.
,
Frigo
,
C.
,
Bettinelli
,
D.
,
Rabuffetti
,
M.
,
Crenna
,
P.
, and
Leardini
,
A.
,
2008
, “
Quantitative Comparison of Five Current Protocols in Gait Analysis
,”
Gait Posture
,
28
(
2
), pp.
207
216
.
You do not currently have access to this content.