Currently, most of commercial needle-free jet injectors generate the liquid jet by a method called “driving object method” (DOM); however, the reliability and efficiency are still questioned. This paper proposes a new concept of jet generation method, known as “impact driven method” (IDM). A prototype of an IDM jet injector is designed, built, tested, and compared to a commercial device (Cool.click, Tigard, OR). Fundamental characteristics, i.e., the exit jet velocity and impact pressure, are measured. Jet injection processes are visualized both in air and in 20% polyacrylamide by high speed photography. In this study, from the prototype of the IDM jet injector, a maximum jet velocity of 400 m/s and impact peak pressure of 68 MPa can be obtained. It is clear that the IDM jet injector provides a double pulsed liquid jet, which is a major advantage over the commercial jet injector. Because, the first pulse gives a shorter erosion stage, and then, immediately the second pulse follows and provides a better penetration, wider lateral dispersion, and considerably less back splash. Hence, lower pain level and higher delivery efficiency should be achieved. It can be concluded that the IDM concept is highly feasible for implementation in real applications, either for human or animal injection. However, the control and accuracy of IDM still needs to be carefully investigated.

Reference

Reference
1.
O'Hagan
,
D. T.
, and
Rappuoli
,
R.
,
2006
, “
Novel Approaches to Pediatric Vaccine Delivery
,”
Adv. Drug Delivery Rev.
,
58
(
1
), pp.
29
51
.
2.
Arora
,
A.
,
Prausnitzc
,
M. R.
, and
Mitragotri
,
S.
,
2008
, “
Micro-Scale Devices for Transdermal Drug Delivery
,”
Int. J. Pharm.
,
364
(
2
), pp.
227
236
.
3.
Baxter
,
J.
, and
Mitragotri
,
S.
,
2004
, “
Needle-Free Jet Injection: Dependence of Jet Penetration and Dispersion in the Skin on Jet Power
,”
J. Controlled Release
,
97
(
3
), pp.
527
535
.
4.
Baxter
,
J.
,
2004
, “
Fundamental Mechanisms of Drug Delivery by Jet Injection: Basis for the Development of a Painless Microjet Injector
,” Doctoral thesis, University of California, Santa Barbara, CA.
5.
Shergold
,
O. A.
,
Fleck
,
N. A.
, and
King
,
T. S.
,
2006
, “
The Penetration of a Soft Solid by a Liquid Jet, With Application to the Administration of a Needle-Free Injection
,”
J. Biomech.
,
39
(
14
), pp.
2593
2602
.
6.
Stachowiak
,
J. C.
,
Muhlen
,
M. G. V.
,
Li
,
T. H.
,
Jalilian
,
L.
,
Parekh
,
S. H.
, and
Fletcher
,
D. A.
,
2007
, “
Piezoelectric Control of Needle-Free Transdermal Drug Delivery
,”
J. Controlled Release
,
124
(
1–2
), pp.
88
97
.
7.
Hemond
,
B. D.
,
Wendell
,
D. M.
,
Hogan
,
N. C.
,
Taberner
,
A. J.
, and
Hunter
,
I. W.
,
2006
, “
A Lorentz-Force Actuated Autoloading Needle-Free Injector
,” 28th
IEEE/EMBS
Annual International Conference
, New York, Aug. 30–Sept. 3, pp.
679
682
.
8.
Taberner
,
A. J.
,
Ball
,
N. B.
,
Hogan
,
N. C.
, and
Hunter
,
I. W.
,
2006
, “
A Portable Needle-Free Jet Injector Based on a Custom High Power-Density Voice-Coil Actuator
,” 28th
IEEE/EMBS
Annual International Conference
, New York, Aug. 30–Sept. 3, pp.
5001
5004
.
9.
Arora
,
A.
,
Hakim
,
I.
,
Baxter
,
J.
,
Rathnasingham
,
R.
,
Srinivasan
,
R.
, and
Fletcher
,
D. A.
,
2007
, “
Needle-Free Delivery of Macromolecules Across the Skin by Nanoliter-Volume Pulsed Microjets
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
11
), pp.
4255
4260
.
10.
Giudice
,
E. L.
, and
Campbell
,
J. D.
,
2006
, “
Needle-Free Vaccine Delivery
,”
Adv. Drug Delivery Rev.
,
58
(
1
), pp.
68
89
.
11.
Baxter
,
J.
, and
Mitragotri
,
S.
,
2005
, “
Jet-Induced Skin Puncture and Its Impact on Needle-Free Jet Injection: Experimental Studies and a Predictive Model
,”
J. Controlled Release
,
106
(
3
), pp.
361
373
.
12.
Hoffman
,
P. N.
,
Abuknesha
,
R. A.
,
Andrews
,
N. J.
,
Samuel
,
D.
, and
Loyd
,
J. S.
,
2001
, “
A Model to Assess the Infection Potential of Jet Injectors Used in Mass Immunization
,”
Vaccine
,
19
(
28–29
), pp.
4020
4027
.
13.
Baxtera
,
J. S.
,
Katrencikb
,
J.
, and
Mitragotria
,
S.
,
2004
, “
Jet Injection Into Polyacrylamide Gels: Investigation of Jet Injection Mechanics
,”
J. Biomech.
,
37
(
8
), pp.
1181
1188
.
14.
Baker
,
A. B.
, and
Sanders
,
J. E.
,
1999
, “
Fluid Mechanics Analysis of a Spring-Loaded Jet Injector
,”
IEEE Trans. Biomed. Eng.
,
46
(
2
), pp.
235
242
.
15.
Chen
,
K.
, and
Zhou
,
H.
,
2011
, “
An Experimental Study and Model Validation of Pressure in Liquid Needle-Free Injection
,”
Int. J. Phys. Sci.
,
6
(
7
), pp.
1552
1562
.
16.
Stachowiak
,
J. C.
,
Li
,
T. H.
,
Arora
,
A.
,
Mitragotri
,
S.
, and
Fletcher
,
D. A.
,
2009
, “
Dynamic Control of Needle-Free Jet Injection
,”
J. Controlled Release
,
135
(
2
), pp.
104
112
.
17.
Shi
,
H. H.
,
1994
, “
Study of Hypersonic Liquid Jet
,” Doctoral thesis, Tohoku University, Sendai, Japan.
18.
Shi
,
H. H.
, and
Takayama
,
K.
,
1995
, “
Generation of High Speed Liquid Jets by High Speed Impact of a Projectile
,”
JSME Int. J.
,
38
(
2
), pp.
181
190
.
19.
Shi
,
H. H.
,
Koshiyama
,
K.
, and
Itoh
,
M.
,
1996
, “
Further Study of the Generation Technique of High Speed Liquid Jets and Related Shock Wave Phenomena Using a Helium Gas Gun
,”
Jpn. J. Appl. Phys.
,
35
(
7
), pp.
4147
4156
.
20.
Pianthong
,
K.
,
Zakrzewski
,
S.
,
Behnia
,
M.
, and
Milton
,
B. E.
,
2003
, “
Characteristics of Impact Driven Supersonic Liquid Jets
,”
Exp. Therm. Fluid Sci.
,
27
(
5
), pp.
589
598
.
21.
Pianthong
,
K.
,
Zakrzewski
,
S.
,
Behnia
,
M.
, and
Milton
,
B. E.
,
2002
, “
Supersonic Liquid Jets: Their Generation and Shock Wave Characteristics
,”
Shock Waves
,
11
(
6
), pp.
457
466
.
22.
Pianthong
,
K.
,
Takayama
,
K.
,
Milton
,
B. E.
, and
Behnia
,
M.
,
2005
, “
Multiple Pulsed Hypersonic Liquid Diesel Fuel Jets Driven by Projectile Impact
,”
Shock Waves
,
14
(
1
), pp.
73
82
.
23.
Seehanam
,
W.
,
Pianthong
,
K.
,
Sittiwong
,
W.
,
Milton
,
B. E.
, and
Takayama
,
K.
,
2012
, “
Investigation on the Generation Process of Impact-Driven High-Speed Liquid Jets Using a CFD Technique
,”
Shock Waves
,
22
(
5
), pp.
465
475
.
24.
Matthujak
,
A.
,
Hosseini
,
S. H. R.
,
Takayama
,
K.
,
Sun
,
M.
, and
Voinovich
,
P.
,
2007
, “
High Speed Jet Formation by Impact Acceleration Method
,”
Shock Waves
,
16
(
6
), pp.
405
419
.
25.
Grinspan
,
A. S.
, and
Gnanamoorthy
,
R.
,
2010
, “
Impact Force of Low Velocity Liquid Droplets Measured Using Piezoelectric PVDF Film
,”
Colloids Surf. A.
,
356
(
1–3
), pp.
162
168
.
26.
Mukda
,
P.
,
Seehanam
,
W.
, and
Pianthong
,
K.
,
2014
, “
Needle-Free Injector by Using IDM Method
,”
25th International Symposium on Transport Phenomena
(
ISTP25
), Krabi, Thailand, Nov. 5–7, Paper No. 34.
You do not currently have access to this content.