Natural orifice transluminal endoscopic surgery (NOTES) is a surgical technique to perform “scarless” abdominal operations. Robotic technology has been exploited to improve NOTES and circumvent its limitations. Lack of a multitasking platform is a major limitation. Manual tool exchange can be time consuming and may lead to complications such as bleeding. Previous multifunctional manipulator designs use electric motors. These designs are bulky, slow, and expensive. This paper presents design, prototyping, and testing of a hydraulic robotic tool changing manipulator. The manipulator is small, fast, low-cost, and capable of carrying four different types of laparoscopic instruments.

References

References
1.
Swanstrom
,
L. L.
,
Khajanchee
,
Y.
, and
Abbas
,
M. A.
,
2008
, “
Natural Orifice Transluminal Endoscopic Surgery: The Future of Gastrointestinal Surgery
,”
Perm. J.
,
12
(
2
), pp.
42
47
.
2.
Nakamura
,
A.
,
2010
, “
Design and Analysis of Multifunctional Robot for NOTES
,”
M.S. thesis
, University of Nebraska-Lincoln, Lincoln, NE.
3.
Karimyana
,
V.
,
Sodergrena
,
M.
,
Clarka
,
J.
,
Yangb
,
G. Z.
, and
Darzia
,
A.
,
2009
, “
Navigation Systems and Platforms in Natural Orifice Transluminal Endoscopic Surgery (NOTES)
,”
Int. J. Surg.
,
7
(
4
), pp.
297
304
.
4.
Ponsky
,
J. L.
,
2006
, “
Endoluminal Surgery: Past, Present and Future
,”
Surg. Endoscopy
,
20
(
2
), pp.
500
502
.
5.
Harada1
,
K.
,
Oetomo
,
D.
,
Susilo
,
E.
,
Menciassi
,
A.
,
Daney
,
D.
,
Merlet
,
J. P.
, and
Dario
,
P.
,
2010
, “
A Reconfigurable Modular Robotic Endoluminal Surgical System: Visions and Preliminary Results
,”
Robotica
,
28
(
2
), pp.
171
183
.
6.
Lehman
,
A. C.
,
2012
, “
Miniature In Vivo Robots for Minimally Invasive Surgery
,”
Ph.D. thesis
, University of Nebraska Lincoln, Lincoln, NE.
7.
Son
,
J.
,
Cho
,
C. N.
,
Kim
,
K. G.
,
Chang
,
T. Y.
,
Jung
,
H.
,
Kim
,
S. C.
,
Kim
,
M. T.
,
Yang
,
N.
,
Kim
,
T. Y.
, and
Sohn
,
D. K.
,
2015
, “
A Novel Semi-Automatic Snake Robot for Natural Orifice Transluminal Endoscopic Surgery: Preclinical Tests in Animal and Human Cadaver Models (With Video)
,”
Surg. Endoscopy
,
29
(
6
), pp.
1643
16437
.
8.
Zhang
,
X.
,
Chin
,
W. J.
,
Seow
,
C. M.
,
Nakamura
,
A.
,
Head
,
M.
,
Farritor
,
S. M.
,
Oleynikov
,
D.
, and
Nelson
,
C. A.
,
2011
, “
Multifunction Robotic Platform for Natural Orifice Surgery
,”
Stud. Health Technol. Inf.
,
163
, pp.
740
742
.
9.
Shen
,
T.
,
Nelson
,
C.
,
Warburton
,
K.
, and
Oleynikov
,
D.
,
2015
, “
Design and Analysis of a Novel Articulated Drive Mechanism for Multifunctional NOTES Robot
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011004
.
10.
Seow
,
C. M.
,
Chin
,
W. J.
,
Nelson
,
C. A.
,
Nakamura
,
A.
,
Farritor
,
S.
, and
Oleynikov
,
D.
,
2013
, “
Articulated Manipulator With Multiple Instruments for Natural Orifice Transluminal Endoscopic Surgery
,”
ASME J. Med. Devices
,
7
(
4
), p.
041004
.
11.
Phee
,
S. J.
,
Low
,
S. C.
,
Sun
,
Z. L.
,
Ho
,
K. Y.
,
Huang
,
W. M.
, and
Thant
,
Z.
,
2008
, “
Robotic System for No-Scar Gastrointestinal Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
4
(
1
), pp.
15
22
.
12.
Berg
,
D. R.
,
2013
, “
Design of a Hydraulic Dexterous Manipulator for Minimally Invasive Surgery
,”
Ph.D. thesis
, University of Minnesota—Twin Cities, Minneapolis, MN.
13.
Moers
,
A. J.
,
De Volder
,
M. F.
, and
Reynaerts
,
D.
,
2012
, “
Integrated High Pressure Microhydraulic Actuation and Control for Surgical Instruments
,”
Biomed. Microdevices
,
14
(
4
), pp.
699
708
.
14.
Liu
,
T.
,
2011
, “
Design and Prototyping of a Three Degrees of Freedom Robotic Wrist Mechanism for a Robotic Surgery System
,”
M.S. thesis
, Case Western Reserve University, Cleveland, OH.
15.
Stilli
,
A.
,
Wurdemann
,
H. A.
, and
Althoefer
,
K.
,
2014
, “
Shrinkable, Stiffness-Controllable Soft Manipulator Based on a Bio-Inspired Antagonistic Actuation Principle
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Sept. 14–18, pp.
2476
2481
.
16.
Pourghodrat
,
A.
,
Nelson
,
C. A.
, and
Oleynikov
,
D.
,
2014
, “
Electro-Hydraulic Robotic Manipulator With Multiple Instruments for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
8
(
3
), p.
030919
.
17.
Pourghodrat
,
A.
, and
Nelson
,
C. A.
,
2016
, “
Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics
,”
ASME J. Med. Devices
,
11
(
1
), p.
011003
.
You do not currently have access to this content.