Recent advances in medical robotics have initiated a transition from rigid serial manipulators to flexible or continuum robots capable of navigating to confined anatomy within the body. A desire for further procedure minimization is a key accelerator for the development of these flexible systems where the end goal is to provide access to the previously inaccessible anatomical workspaces and enable new minimally invasive surgical (MIS) procedures. While sophisticated navigation and control capabilities have been demonstrated for such systems, existing manufacturing approaches have limited the capabilities of millimeter-scale end-effectors for these flexible systems to date and, to achieve next generation highly functional end-effectors for surgical robots, advanced manufacturing approaches are required. We address this challenge by utilizing a disruptive 2D layer-by-layer precision fabrication process (inspired by printed circuit board manufacturing) that can create functional 3D mechanisms by folding 2D layers of materials which may be structural, flexible, adhesive, or conductive. Such an approach enables actuation, sensing, and circuitry to be directly integrated with the articulating features by selecting the appropriate materials during the layer-by-layer manufacturing process. To demonstrate the efficacy of this technology, we use it to fabricate three modular robotic components at the millimeter-scale: (1) sensors, (2) mechanisms, and (3) actuators. These modules could potentially be implemented into transendoscopic systems, enabling bilateral grasping, retraction and cutting, and could potentially mitigate challenging MIS interventions performed via endoscopy or flexible means. This research lays the ground work for new mechanism, sensor and actuation technologies that can be readily integrated via new millimeter-scale layer-by-layer manufacturing approaches.

References

References
1.
Speich
,
J.
, and
Rosen
,
J.
,
2004
, “
Medical Robotics
,” Encyclopedia of Biomaterials and Biomedical Engineering, Marcel Dekker, Inc., New York, pp. 983–993.
2.
Dupont
,
P. E.
,
Lock
,
J.
,
Itkowitz
,
B.
, and
Butler
,
E.
,
2010
, “
Design and Control of Concentric-Tube Robots
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
209
225
.
3.
Weaver
,
K.
,
Webster
,
R.
,
Swaney
,
P.
,
Burgner
,
J.
,
Russell
,
P.
,
Gilbert
,
H.
,
Bekeny
,
J.
, and
Hendrick
,
R.
,
2013
, “
The Use of Teleoperated Concentric Tube Robots for Transsphenoidal Parasellar Surgery
,”
J. Neurol. Surg. Part B: Skull Base
,
74
(
S 01
), p.
A123
.
4.
Webster
,
R. J.
,
2007
, “
Design and Mechanics of Continuum Robots for Surgery
,” Doctoral thesis, Johns Hopkins University, Baltimore, MD.
5.
Bajo
,
A.
,
Dharamsi
,
L. M.
,
Netterville
,
J. L.
,
Garrett
,
C. G.
, and
Simaan
,
N.
,
2013
, “
Robotic-Assisted Micro-Surgery of the Throat: the Trans-Nasal Approach
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
232
238
.
6.
Simaan
,
N.
,
Kai
,
X.
,
Wei
,
W.
,
Kapoor
,
A.
,
Kazanzides
,
P.
,
Taylor
,
R.
, and
Flint
,
P.
,
2009
, “
Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1134
1153
.
7.
Kesner
,
S. B.
, and
Howe
,
R. D.
,
2014
, “
Robotic Catheter Cardiac Ablation Combining Ultrasound Guidance and Force Control
,”
Int. J. Rob. Res.
,
33
(
4
), pp.
631
644
.
8.
Schneider
,
J.
,
Burgner
,
J.
,
Webster
,
R.
, III
, and
Russell
,
P.
, III
,
2014
, “
Robotic Surgery for the Sinuses and Skull Base: What are the Possibilities and What are the Obstacles?
,”
Curr. Opin. Otolaryngol. Head Neck Surg.
,
21
(
1
), pp.
11
16
.
9.
Gosline
,
A.
,
Vasilyev
,
N.
,
Veeramini
,
A.
,
Wu
,
M.
,
Schmitz
,
G.
,
Chen
,
R.
,
Arabagi
,
V.
,
del Nido
,
P.
, and
Dupont
,
P.
,
2012
, “
Metal MEMS Tools for Beating-Heart Tissue Removal
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), St. Paul, MN, May 14–18, pp.
1921
1926
.
10.
Rebello
,
K. J.
,
2004
, “
Applications of MEMS in Surgery
,”
IEEE
, Vol.
92
(
1
), pp.
43
55
.
11.
Traeger
,
M. F.
,
Roppenecker
,
D. B.
,
Leininger
,
M. R.
,
Schnoes
,
F.
, and
Lueth
,
T. C.
,
2014
, “
Design of a Spine-Inspired Kinematic for the Guidance of Flexible Instruments in Minimally Invasive Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, Sept. 14–18, pp.
1322
1327
.
12.
Whitney
,
J. P.
,
Sreetharan
,
P. S.
,
Ma
,
K. Y.
, and
Wood
,
R. J.
,
2011
, “
Pop-up Book MEMS
,”
J. Micromech. Microeng.
,
21
(
11
), p.
115021
.
13.
Bethea
,
B.
,
Okamura
,
A.
,
Kitagawa
,
M.
,
Fitton
,
T.
,
Cattaneo
,
S.
,
Gott
,
V.
,
Baumgartner
,
W.
, and
Yuh
,
D.
,
2004
, “
Application of Haptic Feedback to Robotic Surgery
,”
J. Laparoendosc. Adv. Surg. Tech. A
,
14
(
3
), pp.
191
195
.
14.
Moradi Dalvand
,
M.
,
Shirinzadeh
,
B.
,
Nahavandi
,
S.
,
Karimirad
,
F.
, and
Smith
,
J.
,
2013
, “
Force Measurement Capability for Robotic Assisted Minimally Invasive Surgery Systems
,”
International Conference on Intelligent Automation and Robotics
(
ICIAR
), San Francisco, CA, Oct. 23–25, pp.
419
424
.
15.
Trejos
,
A.
,
Patel
,
R.
, and
Naish
,
M.
,
2010
, “
Force Sensing and Its Application in Minimally Invasive Surgery and Therapy: A Survey
,”
Proc. Inst. Mech. Eng., Part C
,
224
(
7
), pp.
1435
1454
.
16.
Polygerinos
,
P.
,
Zbyszewksi
,
D.
,
Schaeffter
,
T.
,
Razavi
,
R.
,
Seneviratne
,
L.
, and
Althoefer
,
K.
,
2010
, “
MRI-Compatible Fiber-Optic Force Sensors for Catheterization Procedures
,”
IEEE Sens. J.
,
10
(
10
), pp.
1598
1608
.
17.
Iordachita
,
I.
,
Sun
,
Z.
,
Balicki
,
M.
,
Kang
,
J. U.
,
Phee
,
S. J.
,
Handa
,
J.
,
Gehlbach
,
P.
, and
Taylor
,
R.
,
2009
, “
A Sub-Millimetric, 0.25 mn Resolution Fully Integrated Fiber-Optic Force-Sensing Tool for Retinal Microsurgery
,”
Int. J. of Computer Assisted Radiology and Surgery
,
4
(4), pp.
383
390
.
18.
Park
,
Y. L.
,
Chau
,
K.
,
Black
,
R. J.
, and
Cutkosky
,
M. R.
,
2007
, “
Force Sensing Robot Fingers Using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Roma, Italy, Apr. 10–14, pp.
1510
1516
.
19.
Puangmali
,
P.
,
Liu
,
H.
,
Seneviratne
,
L. D.
,
Dasgupta
,
P.
, and
Althoefer
,
K.
,
2012
, “
Miniature 3-Axis Distal Force Sensor for Minimally Invasive Surgical Palpation
,”
IEEE/ASME Trans. Mechatronics
,
17
(
4
), pp.
646
656
.
20.
Gafford
,
J. B.
,
Kesner
,
S. B.
,
Degirmenci
,
A.
,
Wood
,
R. J.
,
Howe
,
R. D.
, and
Walsh
,
C. J.
,
2014
, “
A Monolithic Approach to Fabricating Low-Cost, Millimeter-Scale Multi-Axis Force Sensors for Minimally-Invasive Surgery
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
1419
1425
.
21.
Gafford
,
J. B.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2016
, “
Self-Assembling, low-Cost, and Modular mm-Scale Force Sensor
,”
IEEE Sens. J.
,
16
(
1
), pp.
69
76
.
22.
Russo
,
S.
,
Ranzani
,
T.
,
Gafford
,
J.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2016
, “
Soft Pop-Up Mechanisms for Micro Surgical Tools: Design and Characterization of Compliant Millimeter-Scale Articulated Structures
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
750
757
.
23.
Payne
,
C. J.
,
Rafii-Tari
,
H.
,
Marcus
,
H. J.
, and
Yang
,
G. Z.
,
2014
, “
Hand-Held Microsurgical Forceps With Force-Feedback for Micromanipulation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
284
289
.
24.
Menciassi
,
A.
,
Eisinberg
,
A.
,
Carrozza
,
M. C.
, and
Dario
,
P.
,
2003
, “
Force Sensing Microinstrument for Measuring Tissue Properties and Pulse in Microsurgery
,”
IEEE/ASME Transactions on Mechatronics
, Vol.
8
(
1
), pp.
10
17
.
25.
Hammond
,
F.
, III
,
Smith
,
M.
, and
Wood
,
R.
,
2014
, “
Printing Strain Gauges on Surgical Instruments for Force Measurement
,”
ASME J. Med. Devices
,
8
(
3
), p.
030935
.
26.
Lim
,
S.-C.
,
Lee
,
H.-K.
, and
Park
,
J.
,
2014
, “
Grip Force Measurement of Forceps With Fibre Bragg Grating Sensors
,”
Electron. Lett.
,
50
(
10
), pp.
733
735
.
27.
Gafford
,
J. B.
,
Wood
,
R. J.
,
Kesner
,
S. B.
, and
Walsh
,
C. J.
,
2013
, “
Microsurgical Devices by Pop-Up Book MEMS
,”
ASME
Paper No. DETC2013-13086.
28.
Malka
,
R.
,
Desbiens
,
A. L.
,
Chen
,
Y.
, and
Wood
,
R. J.
,
2014
, “
Principles of Microscale Flexure Hinge Design for Enhanced Endurance
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, Sept. 14–18, pp.
2879
2885
.
29.
Degirmenci
,
A.
,
Hammond
,
F.
,
Gafford
,
J. B.
,
Walsh
,
C. J.
,
Wood
,
R. J.
, and
Howe
,
R. D.
,
2015
, “
Design and Control of a Parallel Linkage Wrist for Robotic Microsurgery
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
222
228
.
30.
Lopez
,
J.
,
Kang
,
I.
,
You
,
W.
,
McDonald
,
D.
, and
Weaver
,
V.
,
2011
, “
In Situ Force Mapping of Mammary Gland Transformation
,”
Integr. Biol. (Camb).
,
3
(
9
), pp.
910
921
.
31.
Wood
,
R.
,
Steltz
,
E.
, and
Fearing
,
R.
,
2005
, “
Optimal Energy Density Piezoelectric Bending Actuators
,”
Sens. Actuators A
,
119
(
2
), pp.
476
488
.
32.
Tabesh
,
A.
, and
Fréchette
,
L. G.
,
2008
, “
An Improved Small-Deflection Electromechanical Model for Piezoelectric Bending Beam Actuators and Energy Harvesters
,”
J. Micromech. Microeng.
,
18
(
10
), p.
104009
.
33.
Goldberg
,
B.
,
Karpelson
,
M.
,
Ozcan
,
O.
, and
Wood
,
R. J.
,
2014
, “
Planar Fabrication of a Mesoscale Voice Coil Actuator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
6319
6325
.
34.
Bellmann
,
C.
,
Beshchasna
,
N.
,
Uhlemann
,
J.
, and
Wolter
,
K. J.
,
2009
, “
Parylene C and Silicone as Biocompatible Protection Encapsulants for PCBs
,” 32nd International Spring Seminar on Electronics Technology (
ISSE
), Brno, Czech Republic, May 13–17, pp. 1–6.
You do not currently have access to this content.