Stent geometries are obtained by topology optimization for minimized compliance under different stenosis levels and plaque material types. Three levels of stenosis by cross-sectional area, i.e., 30%, 40%, and 50% and three different plaque material properties, i.e., calcified, cellular, and hypocellular, were studied. The raw optimization results were converted to clear design concepts and their performance was evaluated by implanting them in their respective stenosed artery types using finite element analysis. The results were compared with a generic stent in similar arteries, which showed that the new designs showed less recoil. This work provides a concept that stents could be tailored to specific lesions in order to minimize recoil and maintain a patent lumen in stenotic arteries.

References

References
1.
National Health Service UK, 2013, “
Cardiovascular Disease
,” National Health Service, London, accessed Mar. 27, 2013, http://www.nhs.uk/conditions/cardiovascular-disease/Pages/Introduction.aspx
2.
Sigwart
,
U.
,
Puel
,
J.
,
Mirkovitch
,
V.
,
Joffre
,
F.
, and
Kappenberger
,
L.
,
1987
, “
Intravascular Stents to Prevent Occlusion and Restenosis After Transluminal Angioplasty
,”
N. Engl. J. Med.
,
316
(
12
), pp.
701
706
.
3.
McClean
,
D. R.
,
Eiger
,
N. L.
, and
Eigler
,
N. L.
,
2001
, “
Stent Design: Implications for Restenosis
,”
Rev. Cardiovasc. Med.
,
3
(Suppl. 5), pp.
S16
S22
.http://europepmc.org/abstract/med/12478231
4.
Hara
,
H.
,
Nakamura
,
M.
,
Palmaz
,
J. C.
, and
Schwartz
,
R. S.
,
2006
, “
Role of Stent Design and Coatings on Restenosis and Thrombosis
,”
Adv. Drug Delivery Rev.
,
58
(
3
), pp.
377
86
.
5.
Poncin
,
P.
, and
Proft
,
J.
,
2003
, “
Stent Tubing: Understanding the Desired Attributes
,”
Medical Device Materials: Proceedings of the Materials & Processes for Medical Devices Conference
, ASM International, Sept. 8–10, 2003, Materials Park, OH, pp.
253
259
.https://books.google.com/books?hl=en&lr=&id=Jv1Wysf1jv8C&oi=fnd&pg=PA253&dq=Stent+Tubing:+Understanding+the+Desired+Attributes&ots=HCcTWHgxdO&sig=qhaWeeWdYBPHTfo_VAttpr_OjEQ#v=onepage&q=Stent%20Tubing%3A%20Understanding%20the%20Desired%20Attributes&f=false
6.
Morton
,
A. C.
,
Crossman
,
D.
, and
Gunn
,
J.
,
2004
, “
The Influence of Physical Stent Parameters Upon Restenosis
,”
Pathol. Biol. (Paris).
,
52
(
4
), pp.
196
205
.
7.
Rogers
,
C.
, and
Edelman
,
E. R.
,
1995
, “
Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis
,”
Circulation
,
91
(
12
), pp.
2995
3001
.
8.
Kastrati
,
A.
,
Mehilli
,
J.
,
Dirschinger
,
J.
,
Pache
,
J.
,
Ulm
,
K.
,
Schühlen
,
H.
,
Seyfarth
,
M.
,
Schmitt
,
C.
,
Blasini
,
R.
,
Neumann
,
F. J.
, and
Schömig
,
A.
,
2001
, “
Restenosis After Coronary Placement of Various Stent Types
,”
Am. J. Cardiol.
,
87
(
1
), pp.
34
9
.
9.
Lee
,
R. T.
,
Grodzinsky
,
A. J.
,
Frank
,
E. H.
,
Kamm
,
R. D.
, and
Schoen
,
F. J.
,
1991
, “
Structure-Dependent Dynamic Mechanical Behavior of Fibrous Caps From Human Atherosclerotic Plaques
,”
Circulation
,
83
(
5
), pp.
1764
1770
.
10.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
Finite Element Analysis of the Implantation of a Self-Expanding Stent: Impact of Lesion Calcification
,”
ASME J. Med. Devices
,
6
(
2
), p.
021001
.
11.
Elezi
,
S.
,
Kastrati
,
A.
,
Neumann
,
F.-J.
,
Hadamitzky
,
M.
,
Dirschinger
,
J.
, and
Schomig
,
A.
,
1998
, “
Vessel Size and Long-Term Outcome After Coronary Stent Placement
,”
Circulation
,
98
(
18
), pp.
1875
1880
.
12.
Krankenberg
,
H.
,
Schlüter
,
M.
,
Steinkamp
,
H. J.
,
Bürgelin
,
K.
,
Scheinert
,
D.
,
Schulte
,
K.-L.
,
Minar
,
E.
,
Peeters
,
P.
,
Bosiers
,
M.
,
Tepe
,
G.
,
Reimers
,
B.
,
Mahler
,
F.
,
Tübler
,
T.
, and
Zeller
,
T.
,
2007
, “
Nitinol Stent Implantation Versus Percutaneous Transluminal Angioplasty in Superficial Femoral Artery Lesions up to 10 cm in Length: The Femoral Artery Stenting Trial (FAST)
,”
Circulation
,
116
(
3
), pp.
285
292
.
13.
García
,
A.
,
Peña
,
E.
, and
Martínez
,
M. A.
,
2012
, “
Influence of Geometrical Parameters on Radial Force During Self-Expanding Stent Deployment. Application for a Variable Radial Stiffness Stent
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
166
175
.
14.
Pericevic
,
I.
,
Lally
,
C.
,
Toner
,
D.
, and
Kelly
,
D. J.
,
2009
, “
The Influence of Plaque Composition on Underlying Arterial Wall Stress During Stent Expansion: The Case for Lesion-Specific Stents
,”
Med. Eng. Phys.
,
31
(
4
), pp.
428
33
.
15.
Nissen
,
S. E.
, and
Yock
,
P.
,
2001
, “
Intravascular Ultrasound: Novel Pathophysiological Insights and Current Clinical Applications
,”
Circulation
,
103
(
4
), pp.
604
616
.
16.
Budoff
,
M. J.
,
Achenbach
,
S.
,
Blumenthal
,
R. S.
,
Carr
,
J. J.
,
Goldin
,
J. G.
,
Greenland
,
P.
,
Guerci
,
A. D.
,
Lima
,
J. A. C.
,
Rader
,
D. J.
,
Rubin
,
G. D.
,
Shaw
,
L. J.
, and
Wiegers
,
S. E.
,
2006
, “
Assessment of Coronary Artery Disease by Cardiac Computed Tomography
,”
Circulation
,
114
(
16
), pp.
1761
1791
.
17.
Dweck
,
M. R.
,
Puntmann
,
V. O.
,
Vesey
,
A. T.
,
Fayad
,
Z. A.
, and
Nagel
,
E.
,
2016
, “
MR Imaging of Coronary Arteries and Plaques
,”
JACC Cardiovasc. Imaging
,
9
(
3
), pp.
306
316
.
18.
Makowski
,
M. R.
,
Henningsson
,
M.
,
Spuentrup
,
E.
,
Kim
,
W. Y.
,
Maintz
,
D.
,
Manning
,
W. J.
, and
Botnar
,
R. M.
,
2013
, “
Characterization of Coronary Atherosclerosis by Magnetic Resonance Imaging
,”
Circulation
,
128
(
11
), pp.
1244
1255
.
19.
Huang
,
D.
,
Swanson
,
E. A.
,
Lin
,
C. P.
,
Schuman
,
J. S.
,
Stinson
,
W. G.
,
Chang
,
W.
,
Hee
,
M. R.
,
Flotte
,
T.
,
Gregory
,
K.
,
Puliafito
,
C. A.
, and
Fujimoto
,
J. G.
,
1991
, “
Optical Coherence Tomography
,”
Science
,
254
(
5035
), pp.
1178
1181
.
20.
Kim
,
D.-H.
,
Lu
,
N.
,
Ghaffari
,
R.
,
Kim
,
Y.-S.
,
Lee
,
S. P.
,
Xu
,
L.
,
Wu
,
J.
,
Kim
,
R.-H.
,
Song
,
J.
,
Liu
,
Z.
,
Viventi
,
J.
,
de Graff
,
B.
,
Elolampi
,
B.
,
Mansour
,
M.
,
Slepian
,
M. J.
,
Hwang
,
S.
,
Moss
,
J. D.
,
Won
,
S.-M.
,
Huang
,
Y.
,
Litt
,
B.
, and
Rogers
,
J. A.
,
2011
, “
Materials for Multifunctional Balloon Catheters With Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy
,”
Nat Mater
,
10
(
4
), pp.
316
323
.
21.
Slepian
,
M. J.
,
Ghaffari
,
R.
, and
Rogers
,
J. A.
,
2011
, “
Multifunctional Balloon Catheters of the Future
,”
Interventional Cardiology
,
3
(
4
), pp.
417
419
.
22.
Iqbal
,
J.
,
Onuma
,
Y.
,
Ormiston
,
J.
,
Abizaid
,
A.
,
Waksman
,
R.
, and
Serruys
,
P.
,
2014
, “
Bioresorbable Scaffolds: Rationale, Current Status, Challenges, and Future
,”
Eur. Heart J.
,
35
(
12
), pp.
765
776
.
23.
Moore
,
J. E.
,
Soares
,
J. S.
, and
Rajagopal
,
K. R.
,
2010
, “
Biodegradable Stents: Biomechanical Modeling Challenges and Opportunities
,”
Cardiovasc. Eng. Technol.
,
1
(
1
), pp.
52
65
.
24.
Huang
,
X.
, and
Xie
,
Y. M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
Wiley
, Chichester, UK.
25.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
26.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
27.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
28.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
29.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
30.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
31.
Querin
,
O. M.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
,
1998
, “
Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm
,”
Eng. Comput.
,
15
(
8
), pp.
1031
1048
.
32.
Yang
,
X. Y.
,
Xei
,
Y. M.
,
Steven
,
G. P.
, and
Querin
,
O. M.
,
1999
, “
Bidirectional Evolutionary Method for Stiffness Optimization
,”
AIAA J.
,
37
(
11
), pp.
1483
1488
.
33.
Abdi
,
M.
,
Wildman
,
R.
, and
Ashcroft
,
I.
,
2013
, “
Evolutionary Topology Optimization Using the Extended Finite Element Method and Isolines
,”
Eng. Optim.
,
46
(
5
), pp.
628
647
.
34.
Bedoya
,
J.
,
Meyer
,
C. A.
,
Timmins
,
L. H.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
,
2006
, “
Effects of Stent Design Parameters on Normal Artery Wall Mechanics
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
757
765
.
35.
Migliavacca
,
F.
,
Petrini
,
L.
,
Montanari
,
V.
,
Quagliana
,
I.
,
Auricchio
,
F.
, and
Dubini
,
G.
,
2005
, “
A Predictive Study of the Mechanical Behaviour of Coronary Stents by Computer Modelling
,”
Med. Eng. Phys.
,
27
(
1
), pp.
13
18
.
36.
Etave
,
F.
,
Finet
,
G.
,
Boivin
,
M.
,
Boyer
,
J. C.
,
Rioufol
,
G.
, and
Thollet
,
G.
,
2001
, “
Mechanical Properties of Coronary Stents Determined by Using Finite Element Analysis
,”
J. Biomech.
,
34
(
8
), pp.
1065
1075
.
37.
Petrini
,
L.
,
Migliavacca
,
F.
,
Auricchio
,
F.
, and
Dubini
,
G.
,
2004
, “
Numerical Investigation of the Intravascular Coronary Stent Flexibility
,”
J. Biomech.
,
37
(
4
), pp.
495
501
.
38.
Timmins
,
L. H.
,
Meyer
,
C. A.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
,
2008
, “
Effects of Stent Design and Atherosclerotic Plaque Composition on Arterial Wall Biomechanics
,”
J. Endovasc. Ther.
,
15
(
6
), pp.
643
654
.
39.
Wu
,
W.
,
Yang
,
D.-Z.
,
Huang
,
Y.-Y.
,
Qi
,
M.
, and
Wang
,
W.-Q.
,
2008
, “
Topology Optimization of a Novel Stent Platform With Drug Reservoirs
,”
Med. Eng. Phys.
,
30
(
9
), pp.
1177
1185
.
40.
Guimarães
,
T. A.
,
Oliveira
,
S. A. G.
, and
Duarte
,
M. A.
,
2008
, “
Application of the Topological Optimization Technique to the Stents Cells Design for Angioplasty
,”
J. Braz. Soc. Mech. Sci. Eng.
,
30
(
3
), pp.
261
268
.
41.
Liu
,
Q.
,
2014
, “
Concept Design of Cardiovascular Stents Based on Load Identification
,”
J. Inst. Eng. Ser. C
,
96
(
2
), pp.
99
105
.
42.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
43.
Van Andel
,
C. J.
,
Pistecky
,
P. V.
, and
Borst
,
C.
,
2003
, “
Mechanical Properties of Porcine and Human Arteries: Implications for Coronary Anastomotic Connectors
,”
Ann. Thorac. Surg.
,
76
(
1
), pp.
58
64; discussion 64–65
.
44.
Tamai
,
H.
,
Igaki
,
K.
,
Tsuji
,
T.
,
Kyo
,
E.
,
Kosuga
,
K.
,
Kawashima
,
A.
,
Matsui
,
S.
,
Komori
,
H.
,
Motohara
,
S.
,
Uehata
,
H.
, and
Takeuchi
,
E.
,
1999
, “
A Biodegradable Poly-l-lactic Acid Coronary Stent in the Porcine Coronary Artery
,”
J. Interventional Cardiology
,
12
(
6
), pp.
443
450
.
45.
Jamshidian
,
M.
,
Tehrany
,
E. A.
,
Imran
,
M.
,
Jacquot
,
M.
, and
Desobry
,
S.
,
2010
, “
Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies
,”
Compr. Rev. Food Sci. Food Saf.
,
9
(
5
), pp.
552
571
.
46.
Vroman
,
I.
, and
Tighzert
,
L.
,
2009
, “
Biodegradable Polymers
,”
Materials (Basel).
,
2
(
2
), pp.
307
344
.
47.
Nishida
,
M.
,
Yamaguchi
,
M.
,
Todo
,
M.
,
Takayama
,
T.
,
Häggblad
,
H.-Å.
, and
Jonsén
,
P.
,
2009
, “
Evaluation of Dynamic Compressive Properties of PLA Polymer Blends Using Split Hopkinson Pressure Bar
,”
DYMAT 2009—9th International Conferences on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading
, Brussels, Belgium, pp.
909
915
.
48.
Lally
,
C.
,
Reid
,
A. J.
, and
Prendergast
,
P. J.
,
2004
, “
Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension
,”
Ann. Biomed. Eng.
,
32
(
10
), pp.
1355
1364
.
49.
Sigmund
,
O.
,
2000
, “
Topology Optimization: A Tool for the Tailoring of Structures and Materials
,”
Philos. Trans. R. Soc. A
,
358
(
1765
), pp.
211
227
.
50.
Bendsoe
,
M.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9
), pp.
635
654
.
51.
Kiziltas
,
G.
,
Kikuchi
,
N.
,
Volakis
,
J.
, and
Halloran
,
J.
,
2004
, “
Topology Optimization of Dielectric Substrates for Filters and Antennas Using SIMP
,”
Arch. Comput. Methods Eng.
,
11
(
4
), pp.
355
388
.
52.
Zuo
,
K.
,
Chen
,
L.
,
Zhang
,
Y.
, and
Yang
,
J.
,
2007
, “
Study of Key Algorithms in Topology Optimization
,”
Int. J. Adv. Manuf. Technol.
,
32
, pp.
787
796
.
53.
Ormiston
,
J. A.
, and
Serruys
,
P. W. S.
,
2009
, “
Bioabsorbable Coronary Stents
,”
Circulation
,
2
(
3
), pp.
255
260
.
54.
Martinez-Elbal
,
L.
,
Ruiz-Nodar
,
J. M.
,
Zueco
,
J.
,
Lopez-Minguez
,
J. R.
,
Moreu
,
J.
,
Calvo
,
I.
,
Ramirez
,
J. A.
,
Alonso
,
M.
,
Vazquez
,
N.
,
Lezaun
,
R.
, and
Rodriguez
,
C.
,
2002
, “
Direct Coronary Stenting Versus Stenting With Balloon Pre-Dilation: Immediate and Follow-Up Results of a Multicentre, Prospective, Randomized Study. The DISCO Trial. DIrect Stenting of COronary Arteries
,”
Eur. Heart J.
,
23
(
8
), pp.
633
640
.
55.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
49
62
.
56.
Ramcharitar
,
S.
, and
Serruys
,
P.
,
2008
, “
Fully Biodegradable Coronary Stents
,”
Am. J. Cardiovasc. Drugs
,
8
(
5
), pp.
305
314
.
57.
Mehdizadeh
,
A.
,
Ali
,
M. S. M.
,
Takahata
,
K.
,
Al-Sarawi
,
S.
, and
Abbott
,
D.
,
2013
, “
A Recoil Resilient Lumen Support, Design, Fabrication and Mechanical Evaluation
,”
J. Micromech. Microeng.
,
23
(6), p. 065001.
58.
Gamero
,
L. G.
,
Armentano
,
R. L.
, and
Levenson
,
J.
,
2002
, “
Arterial Wall Diameter and Viscoelasticity Variability
,” IEEE
Computers in Cardiology
, Memphis, TN, Sept. 22–25, pp. 512–516.
59.
Moore
,
J. J.
, and
Berry
,
J. L.
,
2002
, “
Fluid and Solid Mechanical Implications of Vascular Stenting
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
498
508
.
60.
Vaithilingam
,
J.
,
Kilsby
,
S.
,
Goodridge
,
R. D.
,
Christie
,
S. D. R.
,
Edmondson
,
S.
, and
Hague
,
R. J. M.
,
2015
, “
Functionalisation of Ti6Al4V Components Fabricated Using Selective Laser Melting With a Bioactive Compound
,”
Mater. Sci. Eng. C
,
46
, pp.
52
61
.
61.
Vaithilingam
,
J.
,
Kilsby
,
S.
,
Goodridge
,
R. D.
,
Christie
,
S. D. R.
,
Edmondson
,
S.
, and
Hague
,
R. J. M.
,
2014
, “
Immobilisation of an Antibacterial Drug to Ti6Al4V Components Fabricated Using Selective Laser Melting
,”
Appl. Surf. Sci.
,
314
, pp.
642
654
.
62.
He
,
Y.
,
Wildman
,
R. D.
,
Tuck
,
C. J.
,
Christie
,
S. D. R.
, and
Edmondson
,
S.
,
2016
, “
An Investigation of the Behavior of Solvent Based Polycaprolactone Ink for Material Jetting
,”
Sci. Rep.
,
6
, p.
20852
.
63.
Gunasekera
,
D. H. A. T.
,
Kuek
,
S.
,
Hasanaj
,
D.
,
He
,
Y.
,
Tuck
,
C.
,
Croft
,
A.
, and
Wildman
,
R. D.
,
2016
, “
Three Dimensional Ink-Jet Printing of Biomaterials Using Ionic Liquids and Co-Solvents
,”
Faraday Discuss.
,
190
, pp.
509
523
.
64.
He
,
Y.
,
Tuck
,
C. J.
,
Prina
,
E.
,
Kilsby
,
S.
,
Christie
,
S. D. R.
,
Edmondson
,
S.
,
Hague
,
R. J. M.
,
Rose
,
F. R. A. J.
, and
Wildman
,
R. D.
,
2016
, “
A New Photocrosslinkable Polycaprolactone-Based Ink for Three-Dimensional Inkjet Printing
,”
J. Biomed. Mater. Res. B. Appl. Biomater
,
00B
(00).
65.
Begines
,
B.
,
Hook
,
A. L.
,
Alexander
,
M. R.
,
Tuck
,
C. J.
, and
Wildman
,
R. D.
,
2016
, “
Development, Printability and Post-Curing Studies of Formulations of Materials Resistant to Microbial Attachment for Use in Inkjet Based 3D Printing
,”
Rapid Prototyp. J.
,
22
(5), pp. 835–841.
66.
Seyednejad
,
H.
,
Gawlitta
,
D.
,
Dhert
,
W. J. A.
,
van Nostrum
,
C. F.
,
Vermonden
,
T.
, and
Hennink
,
W. E.
,
2011
, “
Preparation and Characterization of a Three-Dimensional Printed Scaffold Based on a Functionalized Polyester for Bone Tissue Engineering Applications
,”
Acta Biomater.
,
7
(
5
), pp.
1999
2006
.
67.
Williams
,
J. M.
,
Adewunmi
,
A.
,
Schek
,
R. M.
,
Flanagan
,
C. L.
,
Krebsbach
,
P. H.
,
Feinberg
,
S. E.
,
Hollister
,
S. J.
, and
Das
,
S.
,
2005
, “
Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated Via Selective Laser Sintering
,”
Biomaterials
,
26
(
23
), pp.
4817
4827
.
You do not currently have access to this content.