To improve arthroscopic skills, the preferred means of training is cadaveric tissue, because this gives the most realistic scenario. A drawback of cadaveric training is that objective performance tracking and accompanied feedback cannot be provided due to the absence of a suitable system. The main criteria were that the system should be compatible with any cadaveric joint, be used with any type of instrument, easy to set up, and measure two critical parameters that reflect the task efficiency (task time) and safety (forces due to instrument–tissue interaction). This resulted in the development of a force measurement system which consists of a custom-made universal vice, a custom-designed six degree-of-freedom (DOF) force measurement table (FMT) coupled to a computer equipped with customized software to record the time and forces in all directions. The FMT was calibrated and able to measure forces in the range of 0–750 N, with an accuracy of 0.1 N. During two cadaveric training courses, measurements were performed with the FMT. It was observed that the acquired force data could discriminate between novices and experts or reflect a certain phase of a navigation task performed in a cadaveric cow and human knee. A distinct phase highlighted from the force measurements is the insufficient joint stressing of novices during navigation. This results in too small a joint space for inspection and forces the novices to readjust the stressing. As forces cannot be seen, the FMT can contribute to more efficient training by providing explicit cues on the exerted loads during training. This enables a more precise supervision of the trainees.

References

References
1.
Reznick
,
R. K.
,
1993
, “
Teaching and Testing Technical Skills
,”
Am. J. Surg.
,
165
(
3
). pp.
358
361
.
2.
Horeman
,
T.
,
Akhtar
,
K.
, and
Tuijthof
,
G. J.
,
2015
, “
Physical Simulators
,”
Effective Training of Arthroscopic Skills
,
Springer
,
Berlin
, pp.
57
69
.
3.
Wolf
,
B. R.
, and
Britton
,
C. L.
,
2013
, “
How Orthopaedic Residents Perceive Educational Resources
,”
Iowa Orthop. J.
,
33
, pp.
185
190
.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748877/
4.
Mattos e Dinato
,
M. C.
,
Freitas
,
M. F.
, and
Iutaka
,
A. S.
,
2010
, “
A Porcine Model for Arthroscopy
,”
Foot Ankle Int.
,
31
(
2
), pp.
179
181
.
5.
Patel
,
D.
, and
Guhl
,
J. F.
,
1983
, “
The Use of Bovine Knees in Operative Arthroscopy
,”
Orthopedics
,
6
(
9
), pp.
1119
1124
.
6.
Splawski
,
R.
,
2011
, “
Animal Model of Humeral Joint for Shoulder Arthroscopy Training
,”
Chir. Narzadow Ruchu Ortop. Pol.
,
76
(
6
), pp.
324
326
.
7.
Unalan
,
P. C.
,
Akan
,
K.
,
Orhun
,
H.
,
Akgun
,
U.
,
Poyanli
,
O.
,
Baykan
,
A.
,
Yavuz
,
Y.
,
Beyzadeoglu
,
T.
,
Nuran
,
R.
,
Kocaoglu
,
B.
,
Topsakal
,
N.
,
Akman
,
M.
, and
Karahan
,
M.
,
2010
, “
A Basic Arthroscopy Course Based on Motor Skill Training
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
18
(
10
), pp.
1395
1399
.
8.
Madan
,
S. S.
, and
Pai
,
D. R.
,
2014
, “
Role of Simulation in Arthroscopy Training
,”
Simul. Healthcare
,
9
(
2
), pp.
127
135
.
9.
Butler
,
A.
,
Olson
,
T.
,
Koehler
,
R.
, and
Nicandri
,
G.
,
2013
, “
Do the Skills Acquired by Novice Surgeons Using Anatomic Dry Models Transfer Effectively to the Task of Diagnostic Knee Arthroscopy Performed on Cadaveric Specimens?
,”
J. Bone Jt. Surg. Am.
,
95
(
3
), pp.
e15
e18
.
10.
Slade Shantz
,
J. A.
,
Leiter
,
J. R.
,
Collins
,
J. B.
, and
MacDonald
,
P. B.
,
2013
, “
Validation of a Global Assessment of Arthroscopic Skills in a Cadaveric Knee Model
,”
Arthroscopy
,
29
(
1
), pp.
106
112
.
11.
Tuijthof
,
G. J.
, and
Sierevelt
,
I. N.
,
2015
, “
Monitoring Performance and Progression in the Operating Theatre
,”
Effective Training of Arthroscopic Skills
,
Springer
,
Berlin
, pp.
149
163
.
12.
Obdeijn
,
M. C.
,
van Baalen
,
S. J.
,
Horeman
,
T.
,
Liverneaux
,
P.
, and
Tuijthof
,
G. J.
,
2014
, “
The Use of Navigation Forces for Assessment of Wrist Arthroscopy Skills Level
,”
J. Wrist Surg.
,
3
(
2
), pp.
132
138
.
13.
Obdeijn
,
M. C.
,
Horeman
,
T.
,
de Boer
,
L. L.
,
van Baalen
,
S. J.
,
Liverneaux
,
P.
, and
Tuijthof
,
G. J.
, 2014, “
Navigation Forces During Wrist Arthroscopy: Assessment of Expert Levels
,”
Knee Surg. Sports Traumatol. Arthrosc.
, epub.
14.
Horeman
,
T.
,
2014
, “
Force-Based Assessment of Tissue Handling Skills
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
15.
Tuijthof
,
G. J.
,
Horeman
,
T.
,
Schafroth
,
M. U.
,
Blankevoort
,
L.
, and
Kerkhoffs
,
G. M.
,
2011
, “
Probing Forces of Menisci: What Levels are Safe for Arthroscopic Surgery
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
19
(
2
), pp.
248
254
.
16.
Tashiro
,
Y.
,
Miura
,
H.
,
Nakanishi
,
Y.
,
Okazaki
,
K.
, and
Iwamoto
,
Y.
,
2009
, “
Evaluation of Skills in Arthroscopic Training Based on Trajectory and Force Data
,”
Clin. Orthop. Relat. Res.
,
467
(
2
), pp.
546
552
.
17.
Obeid
,
E. M.
,
Adams
,
M. A.
, and
Newman
,
J. H.
,
1994
, “
Mechanical Properties of Articular Cartilage in Knees With Unicompartmental Osteoarthritis
,”
J. Bone Jt. Surg., Br.
,
76
(
2
), pp.
315
319
.
18.
Horeman
,
T.
,
Rodrigues
,
S. P.
,
Jansen
,
F. W.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2010
, “
Force Measurement Platform for Training and Assessment of Laparoscopic Skills
,”
Surg. Endoscopy
,
24
(
12
), pp.
3102
3108
.
19.
Clauser
,
C. E.
,
McConville
,
J. T.
, and
Young
,
J. W.
,
1969
, “
Weight, Volume, and Center of Mass of Segments of the Human Body
,” Air Force Systems Command, Wright-Patterson Air Force Base, OH, Report No. AMRL-TR-69-70.
20.
Han
,
T. S.
, and
Lean
,
M. E.
,
1996
, “
Lower Leg Length as an Index of Stature in Adults
,”
Int. J. Obes. Relat. Metab. Disord.
,
20
(
1
), pp.
21
27
.
21.
Stunt
,
J. J.
,
Wulms
,
P. H. L. M.
,
Kerkhoffs
,
G. M. M. J.
,
Sierevelt
,
I. N.
,
Schafroth
,
M. U.
, and
Tuijthof
,
G. J. M.
,
2014
, “
Variation in Joint Stressing Magnitudes During Knee Arthroscopy
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
22
(
7
), pp.
1529
1535
.
22.
Brooks
,
T. L.
,
1990
, “
Telerobotic Response Requirements
,”
IEEE International Conference on Systems, Man and Cybernetics
(
ICSMC
), Los Angeles, CA, Nov. 4–7, pp.
113
120
.
23.
Chami
,
G.
,
Ward
,
J. W.
,
Phillips
,
R.
, and
Sherman
,
K. P.
,
2008
, “
Haptic Feedback Can Provide an Objective Assessment of Arthroscopic Skills
,”
Clin. Orthop. Relat. Res.
,
466
(
4
), pp.
963
968
.
24.
Howells
,
N. R.
,
Brinsden
,
M. D.
,
Gill
,
R. S.
,
Carr
,
A. J.
, and
Rees
,
J. L.
,
2008
, “
Motion Analysis: A Validated Method for Showing Skill Levels in Arthroscopy
,”
Arthroscopy
,
24
(
3
), pp.
335
342
.
25.
Escoto
,
A.
,
Trejos
,
A. L.
,
Naish
,
M. D.
,
Patel
,
R. V.
, and
LeBel
,
M. E.
,
2012
, “
Force Sensing-Based Simulator for Arthroscopic Skills Assessment in Orthopaedic Knee Surgery
,”
Medicine Meets Virtual Reality 19: NextMed
(Studies in Health Technology and Informatics, Vol.
173
),
IOS Press
,
Amsterdam, The Netherlands
, pp. 129–135.
26.
van den Dobbelsteen
,
J. J.
,
Karahan
,
M.
, and
Akgün
,
U.
,
2015
, “
Theory on Psychomotor Learning Applied to Arthroscopy
,”
Effective Training of Arthroscopic Skills
,
Springer
,
Berlin
, pp.
17
32
.
You do not currently have access to this content.