Fusiform and wide-neck cerebral aneurysms (CAs) can be challenging to treat with conventional endovascular or surgical approaches. Recently, flow diverters have been developed to treat these cases by diverting flow away from the aneurysm rather than occluding it. The pipeline embolization device (PED), which embodies a single-layer braided design, is best known among available flow diverters. While the device has demonstrated success in recent trials, late aneurysmal rupture after PED treatment has been a concern. More recently, a new generation of dual-layer devices has emerged that includes a novel hyperelastic thin film nitinol (HE-TFN)-covered design. In this study, we compare fluid dynamic performance between the PED and HE-TFN devices using particle image velocimetry (PIV). The PED has a pore density of 12.5–20 pores/mm2 and a porosity of 65–70%. The two HE-TFN flow diverters have pore densities of 14.75 pores/mm2 and 40 pores/mm2, and porosities of 82% and 77%, respectively. Conventional wisdom suggests that the lower porosity PED would decrease intra-aneurysmal flow to the greatest degree. However, under physiologically realistic pulsatile flow conditions, average drops in root-mean-square (RMS) velocity (VRMS) within the aneurysm of an idealized physical flow model were 42.8–73.7% for the PED and 68.9–82.7% for the HE-TFN device with the highest pore density. Interestingly, examination of collateral vessel flows in the same model also showed that the HE-TFN design allowed for greater collateral perfusion than the PED. Similar trends were observed under steady flow conditions in the idealized model. In a more clinically realistic scenario wherein an anatomical aneurysm model was investigated, the PED affected intra-aneurysmal VRMS reductions of 64.3% and 56.3% under steady and pulsatile flow conditions, respectively. In comparison, the high pore density HE-TFN device reduced intra-aneurysmal VRMS by 88% and 71.3% under steady and pulsatile flow conditions, respectively. We attribute the superior performance of the HE-TFN device to higher pore density, which may play a more important role in modifying aneurysmal fluid dynamics than the conventional flow diverter design parameter of greatest general interest, absolute porosity. Finally, the PED led to more elevated intra-aneurysmal pressures after deployment, which provides insight into a potential mechanism for late rupture following treatment with the device.

References

References
1.
Passerini
,
T.
,
Piccinelli
,
M.
,
Veneziani
,
A.
, and
Antiga
,
L.
, “
Aneuriskweb
,” Emory University & Orobix Sri.http://ecm2.mathcs.emory.edu/aneuriskweb/index
2.
Wiebers
,
D. O.
,
Whisnant
,
J. P.
,
Huston
,
J.
, 3rd
,
Meissner
,
I.
,
Brown
,
R. D.
, Jr.
,
Piepgras
,
D. G.
,
Forbes
,
G. S.
,
Thielen
,
K.
,
Nichols
,
D.
, and
O'Fallon
,
W. M.
,
2003
, “
International Study of Unruptured Intracranial Aneurysms Investigators: Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treatment
,”
Lancet
,
362
(
9378
), pp.
103
110
.
3.
Brisman
,
J. L.
,
Song
,
J. K.
, and
Newell
,
D. W.
,
1997
, “
Cerebral Aneurysms
,”
N. Engl. J. Med.
,
355
(
9
), pp.
928
939
.
4.
Schievink
,
W. I.
,
1997
, “
Intracranial Aneurysms
,”
N. Engl. J. Med.
,
336
(
1
), pp.
28
40
.
5.
Suarez
,
J. I.
,
Tarr
,
R. W.
, and
Selman
,
W. R.
,
2006
, “
Aneurysmal Subarachnoid Hemorrhage
,”
N. Engl. J. Med.
,
354
(
4
), pp.
387
396
.
6.
Fischer
,
S.
,
Vajda
,
Z.
,
Perez
,
M. A.
,
Schmid
,
E.
,
Hopf
,
N.
,
Bäzner
,
H.
, and
Henkes
,
H.
,
2012
, “
Pipeline Embolization Device (PED) for Neurovascular Reconstruction: Initial Experience in the Treatment of 101 Intracranial Aneurysms and Dissections
,”
Neuroradiology
,
54
(
4
), pp.
369
382
.
7.
Saatci
,
I.
,
Yavuz
,
K.
,
Ozer
,
C.
,
Geyik
,
S.
, and
Cekirge
,
H. S.
,
2012
, “
Treatment of Intracranial Aneurysms Using the Pipeline Flow-Diverter Embolization Device: A Single-Center Experience With Long-Term Follow-Up Results
,”
Am. J. Neuroradiol.
,
33
(
8
), pp.
1436
1446
.
8.
Murthy
,
S. B.
,
Shah
,
S.
,
Shastri
,
A.
,
Venkatasubba
,
R.
,
Chethan
,
P.
,
Bershad
,
E. M.
, and
Suarez
,
J. I.
,
2014
, “
The Silk Flow Diverter in the Treatment of Intracranial Aneurysms
,”
J. Clin. Neurosci.
,
21
(
2
), pp.
203
206
.
9.
Berge
,
J.
,
Biondi
,
A.
,
Machi
,
P.
,
Brunel
,
H.
,
Pierot
,
L.
,
Gabrillargues
,
J.
,
Kadziolka
,
K.
,
Barreau
,
X.
,
Dousset
,
V.
, and
Bonafe
,
A.
,
2012
, “
Flow-Diverter Silk Stent for the Treatment of Intracranial Aneurysms: 1-Year Follow-Up in a Multicenter Study
,”
Am. J. Neuroradiol.
,
33
(
6
), pp.
1150
1155
.
10.
Kallmes
,
D. F.
,
Ding
,
Y. H.
,
Dai
,
D.
,
Kadirvel
,
R.
,
Lewis
,
D. A.
, and
Cloft
,
H. J.
,
2007
, “
A New Endoluminal, Flow-Disrupting Device for Treatment of Saccular Aneurysms
,”
Stroke
,
38
(
8
), pp.
2346
2352
.
11.
Kallmes
,
D. F.
,
Ding
,
Y. H.
,
Dai
,
D.
,
Kadirvel
,
R.
,
Lewis
,
D. A.
, and
Cloft
,
H. J.
,
2009
, “
A Second-Generation, Endoluminal, Flow-Disrupting Device for Treatment of Saccular Aneurysms
,”
Am. J. Neuroradiol.
,
30
(
6
), pp.
1153
1158
.
12.
Wong
,
G. K.
,
Kwan
,
M. C.
,
Ng
,
R. Y. T.
,
Simon
,
C. H.
, and
Poon
,
W. S.
,
2011
, “
Flow Diverters for Treatment of Intracranial Aneurysms: Current Status and Ongoing Clinical Trials
,”
J. Clin. Neurosci.
,
18
(
6
), pp.
737
740
.
13.
Augsburger
,
L.
,
Farhat
,
M.
,
Reymond
,
P.
,
Fonck
,
E.
,
Kulcsar
,
Z.
,
Stergiopulos
,
N.
, and
Rüfenacht
,
D. A.
,
2009
, “
Effect of Flow Diverter Porosity on Intraaneurysmal Blood Flow
,”
Clin. Neuroradiol.
,
19
(
3
), pp.
204
214
.
14.
Baráth
,
K.
,
Cassot
,
F.
,
Fasel
,
J. H. D.
,
Ohta
,
M.
, and
Rüfenacht
,
D. A.
,
2005
, “
Influence of Stent Properties on the Alteration of Cerebral Intra-Aneurysmal Haemodynamics: Flow Quantification in Elastic Sidewall Aneurysm Models
,”
Neurol. Res.
,
27
(
Suppl. 1
), pp.
120
128
.
15.
Tateshima
,
S.
,
Tanishita
,
K.
,
Hakata
,
Y.
,
Tanoue
,
S. Y.
, and
Vinuela
,
F.
,
2009
, “
Alteration of Intraaneurysmal Hemodynamics by Placement of a Self-Expandable Stent. Laboratory Investigation
,”
J. Neurosurg.
,
111
(
1
), pp.
22
27
.http://thejns.org/doi/abs/10.3171/2009.2.JNS081324
16.
Seong
,
J.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
,
2007
, “
In Vitro Evaluation of Flow Divertors in an Elastase-Induced Saccular Aneurysm Model in Rabbit
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
863
872
.
17.
Liou
,
T.
,
Liou
,
S.
, and
Chu
,
K.
,
2004
, “
Intra-Aneurysmal Flow With Helix and Mesh Stent Placement Across Side-Wall Aneurysm Pore of a Straight Parent Vessel
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
36
43
.
18.
Chun
,
Y.
,
Hur
,
S. C.
,
Kealey
,
C. P.
,
Levi
,
D. S.
,
Mohanchandra
,
K. P.
,
Di Carlo
,
D.
,
Eldredge
,
J. D.
,
Vinuela
,
F.
, and
Carman
,
G. P.
,
2011
, “
Intra-Aneurysmal Flow Reductions in a Thin Film Nitinol Flow Diverter
,”
Smart Mater. Struct.
,
20
(
5
), p.
055021
.
19.
Diaz
,
O.
,
Gist
,
T. L.
,
Manjarez
,
G.
,
Orozco
,
F.
, and
Almeida
,
R.
,
2013
, “
Treatment of 14 Intracranial Aneurysms With the FRED System
,”
J. Neurointerventional Surg.
,
6
(
8
), pp.
614
617
.
20.
Kealey
,
C. P.
,
Chun
,
Y.
,
Viñuela
,
F. E.
,
Mohanchandra
,
K. P.
,
Carman
,
G. P.
,
Viñuela
,
F.
, and
Levi
,
D. S.
,
2012
, “
In Vitro and In Vivo Testing of a Novel, Hyperelastic Thin Film Nitinol Flow Diversion Stent
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
100
(
3
), pp.
718
725
.
21.
Chun
,
Y.
,
Chang
,
H.
,
Lin
,
P.
,
Mohanchandra
,
K. P.
,
Emmons
,
M. C.
,
Seong
,
M.
,
Levi
,
D. S.
,
Tulloch
,
A. W.
,
Kealey
,
C. P.
, and
Rigberg
,
D. A.
,
2010
, “
Computational Modeling and Experimental Characterization of Hyperelastic Thin Film Niti for Neurovascular Microstent Applications
,”
ASME
Paper No. SMASIS2010-3890.
22.
Chun
,
Y.
,
Levi
,
D. S.
,
Mohanchandra
,
K. P.
,
Fishbein
,
M. C.
, and
Carman
,
G. P.
,
2010
, “
Novel Micro-Patterning Processes for Thin Film Niti Vascular Devices
,”
Smart Mater. Struct.
,
19
(
10
), p.
105021
.
23.
Chun
,
Y.
,
Levi
,
D. S.
,
Mohanchandra
,
K. P.
, and
Carman
,
G. P.
,
2009
, “
Superhydrophilic Surface Treatment for Thin Film Niti Vascular Applications
,”
Mater. Sci. Eng. C
,
29
(
8
), pp.
2436
2441
.
24.
Chun
,
Y.
,
Levi
,
D. S.
,
Mohanchandra
,
K. P.
,
Vinuela
,
F.
, and
Carman
,
G. P.
,
2009
, “
Thin Film Nitinol Microstent for Aneurysm Occlusion
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
051014
.
25.
Tulloch
,
A. W.
,
Chun
,
Y.
,
Levi
,
D. S.
,
Mohanchandra
,
K. P.
,
Carman
,
G. P.
,
Lawrence
,
P. F.
, and
Rigberg
,
D. A.
,
2011
, “
Super Hydrophilic Thin Film Nitinol Demonstrates Reduced Platelet Adhesion Compared With Commercially Available Endograft Materials
,”
J. Surg. Res.
,
171
(
1
), pp.
317
322
.
26.
Roszelle
,
B. N.
,
Babiker
,
M. H.
,
Hafner
,
W.
,
Gonzalez
,
L. F.
,
Albuquerque
,
F. C.
, and
Frakes
,
D. H.
,
2013
, “
In Vitro and In Silico Study of Intracranial Stent Treatments for Cerebral Aneurysms: Effects on Perforating Vessel Flows
,”
J. Neurointerventional Surg.
,
5
(
4
), pp.
354
360
.
27.
Frakes
,
D. H.
,
Pekkan
,
K.
,
Dasi
,
L. P.
,
Kitajima
,
H. D.
,
Zelicourt
,
D.
,
Leo
,
H. L.
,
Carberry
,
J.
,
Sundareswaran
,
K.
,
Simon
,
H.
, and
Yoganathan
,
A. P.
,
2008
, “
Modified Control Grid Interpolation for the Volumetric Reconstruction of Fluid Flows
,”
Exp. Fluids
,
45
(
6
), pp.
987
997
.
28.
Frakes
,
D. H.
,
Dasi
,
L. P.
,
Pekkan
,
K.
,
Kitajima
,
H. D.
,
Sundareswaran
,
K.
,
Yoganathan
,
A. P.
, and
Smith
,
M. J.
,
2008
, “
A New Method for Registration-Based Medical Image Interpolation
,”
IEEE Trans. Med. Imaging
,
27
(
3
), pp.
370
377
.
29.
Frakes
,
D. H.
,
Conrad
,
C. P.
,
Healy
,
T. M.
,
Monaco
,
J. W.
,
Fogel
,
M.
,
Sharma
,
S.
,
Smith
,
M. J.
, and
Yoganathan
,
A. P.
,
2003
, “
Application of an Adaptive Control Grid Interpolation Technique to Morphological Vascular Reconstruction
,”
IEEE Trans. Biomed. Eng.
,
50
(
2
), pp.
197
206
.
30.
Wu
,
J.
,
Wei
,
M.
,
Li
,
Y.
,
Ma
,
X.
,
Jia
,
F.
, and
Hu
,
Q.
,
2010
, “
Scale-Adaptive Surface Modeling of Vascular Structures
,”
Biomed. Eng. Online
,
9
(
1
), p.
75
.
31.
Babiker
,
M. H.
,
Gonzalez
,
L. F.
,
Albuquerque
,
F.
,
Collins
,
D.
,
Elvikis
,
A.
, and
Frakes
,
D. H.
,
2010
, “
Quantitative Effects of Coil Packing Density on Cerebral Aneurysm Fluid Dynamics: An In Vitro Steady Flow Study
,”
Ann. Biomed. Eng.
,
38
(
7
), pp.
2293
2301
.
32.
Jou
,
L.-D.
,
Mohamed
,
A.
,
Lee
,
D. H.
, and
Mawad
,
M. E.
,
2007
, “
3D Rotational Digital Subtraction Angiography May Underestimate Intracranial Aneurysms: Findings From Two Basilar Aneurysms
,”
Am. J. Neuroradiol.
,
28
(
9
), pp.
1690
1692
.
33.
Ford
,
M. D.
,
Alperin
,
N.
,
Lee
,
S. H.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2005
, “
Characterization of Volumetric Flow Rate Waveforms in the Normal Internal Carotid and Vertebral Arteries
,”
Physiol. Meas.
,
26
(
4
), pp.
477
488
.
34.
Lanzer
,
P.
, and
Topol
,
E. J.
,
2003
, “
Panvascular Medicine. Integrated Clinical Management
,”
Internist. Prax.
,
43
(
2
), pp.
368
376
.
35.
Mut
,
F.
,
Löhner
,
R.
,
Chien
,
A.
,
Tateshima
,
S.
,
Viñuela
,
F.
,
Putman
,
C.
, and
Cebral
,
J. R.
,
2011
, “
Computational Hemodynamics Framework for the Analysis of Cerebral Aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
6
), pp.
822
839
.
36.
Singhose
,
W.
, and
Donnell
,
J.
,
2009
,
Introductory Mechanical Design Tools
,
Department of Mechanical Engineering, Georgia Institute of Technology
.
37.
Baráth
,
K.
,
Cassot
,
F.
,
Fasel
,
J. H.
,
Ohta
,
M.
, and
Rüfenacht
,
D. A.
,
2005
, “
Influence of Stent Properties on the Alteration of Cerebral Intra-Aneurysmal Haemodynamics: Flow Quantification in Elastic Sidewall Aneurysm Models
,”
Neurol. Res.
,
27
(
Suppl 1
), pp.
120
128
.
38.
Tateshima
,
S.
,
Tanishita
,
K.
,
Hakata
,
Y.
,
Tanoue
,
S.
, and
Viñuela
,
F.
,
2009
, “
Alteration of Intraaneurysmal Hemodynamics by Placement of a Self-Expandable Stent: Laboratory Investigation
,”
J. Neurosurg.
,
111
(
1
), pp.
22
27
.
39.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
.
40.
Kojima
,
M.
,
Irie
,
K.
,
Fukuda
,
T.
,
Arai
,
F.
,
Hirose
,
Y.
, and
Negoro
,
M.
,
2012
, “
The Study of Flow Diversion Effects on Aneurysm Using Multiple Enterprise Stents and Two Flow Diverters
,”
Asian J. Neurosurg.
,
7
(
4
), pp.
159
165
.
41.
Yu
,
C. H.
, and
Kwon
,
T. K.
,
2014
, “
Study of Parameters for Evaluating Flow Reduction With Stents in a Sidewall Aneurysm Phantom Model
,”
Biomed. Mater. Eng.
,
24
(
6
), pp.
2417
2424
.
42.
Cebral
,
J. R.
,
Mut
,
F.
,
Raschi
,
F.
,
Scrivano
,
E.
,
Ceratto
,
R.
,
Lylyk
,
P.
, and
Putman
,
C. M.
,
2011
, “
Aneurysm Rupture Following Treatment With Flow-Diverting Stents: Computational Hemodynamics Analysis of Treatment
,”
Am. J. Neuroradiol.
,
32
(
1
), pp.
27
33
.
43.
Kulcsár
,
Z.
,
Houdart
,
E.
,
Bonafe
,
A.
,
Parker
,
G.
,
Millar
,
J.
,
Goddard
,
A. J. P.
,
Renowden
,
S.
,
Gal
,
G.
,
Turowski
,
B.
, and
Mitchell
,
K.
,
2011
, “
Intra-Aneurysmal Thrombosis as a Possible Cause of Delayed Aneurysm Rupture After Flow-Diversion Treatment
,”
Am. J. Neuroradiol.
,
32
(
1
), pp.
20
25
.
44.
Meng
,
H.
,
Wang
,
Z.
,
Kim
,
M.
,
Ecker
,
R. D.
, and
Hopkins
,
L. N.
,
2006
, “
Saccular Aneurysms on Straight and Curved Vessels are Subject to Different Hemodynamics: Implications of Intravascular Stenting
,”
Am. J. Neuroradiol.
,
27
(
9
), pp.
1861
1865
.http://www.ajnr.org/content/27/9/1861.short
45.
Ma
,
D.
,
Dargush
,
G. F.
,
Natarajan
,
S. K.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2012
, “
Computer Modeling of Deployment and Mechanical Expansion of Neurovascular Flow Diverter in Patient-Specific Intracranial Aneurysms
,”
J. Biomech.
,
45
(
13
), pp.
2256
2263
.
46.
Babiker
,
M. H.
,
Gonzalez
,
L. F.
,
Ryan
,
J. R.
, and
Frakes
,
D. H.
,
2014
, “
Finite Element Modeling of Endovascular Treatments
,” 11th World Congress on Computational Mechanics, Barcelona, Spain.
47.
Babiker
,
M. H.
,
Ryan
,
J. R.
,
Gonzalez
,
L. F.
, and
Frakes
,
D. H.
,
2014
, “
Toward Personalized Planning of Endovascular Treatments for Cerebral Aneurysms
,” 7th World Congress of Biomechanics, Boston, MA.
48.
Fried
,
E.
, and
Idelchik
,
I. E.
,
1994
,
Handbook of Hydraulic Resistance
,
CRC Press
,
Boca Raton, FL
.
49.
Raschi
,
M.
,
Mut
,
F.
,
Löhner
,
R.
, and
Cebral
,
J. R.
,
2014
, “
Strategy for Modeling Flow Diverters in Cerebral Aneurysms as a Porous Medium
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
9
), pp.
909
925
.
50.
Wösten
,
J. H. M.
,
Pachepsky
,
Y. A.
, and
Rawls
,
W. J.
,
2001
, “
Pedotransfer Functions: Bridging the Gap Between Available Basic Soil Data and Missing Soil Hydraulic Characteristics
,”
J. Hydrol.
,
251
(
3
), pp.
123
150
.
You do not currently have access to this content.