In this paper, we present a soft robotic glove designed to augment hand rehabilitation for stroke patients with clenched fist deformity. The robotic glove provides active finger extension for hand rehabilitative training, through its embedded inflatable actuators that are fabricated by heat bonding of flexible plastic sheets. Upon pressurization, the actuators inflate, stiffen, and extend the fingers. The actuators were embedded in the finger pockets of a glove. In this work, the device was evaluated in terms of its extension torque generated on the metacarpophalangeal (MCP) joint of a dummy finger model and a healthy subject. A stroke patient with finger spasticity was recruited to demonstrate the feasibility of the device to assist in finger extension. Preliminary results showed that the device was able to generate significant extension torques to provide assistance in finger extension for both healthy and stroke participants.

References

References
1.
Thevenin-Lemoine
,
C.
,
Denormandie
,
P.
,
Schnitzler
,
A.
,
Lautridou
,
C.
,
Allieu
,
Y.
, and
Genet
,
F.
,
2013
, “
Flexor Origin Slide for Contracture of Spastic Finger Flexor Muscles: A Retrospective Study
,”
J. Bone Jt. Surg.
,
95
(
5
), pp.
446
453
.
2.
Rosenstein
,
L.
,
Ridgel
,
A. L.
,
Thota
,
A.
,
Samame
,
B.
, and
Alberts
,
J. L.
,
2008
, “
Effects of Combined Robotic Therapy and Repetitive-Task Practice on Upper-Extremity Function in a Patient With Chronic Stroke
,”
Am. J. Occup. Ther.
,
62
(
1
), pp.
28
35
.
3.
Maciejasz
,
P.
,
Eschweiler
,
J.
,
Gerlach-Hahn
,
K.
,
Jansen-Troy
,
A.
, and
Leonhardt
,
S.
,
2014
, “
A Survey on Robotic Devices for Upper Limb Rehabilitation
,”
J. Neuroeng. Rehabil.
,
11
(
3
), pp.
1
29
.
4.
Rotella
,
M. F.
,
Reuther
,
K. E.
,
Hofmann
,
C. L.
,
Hage
,
E. B.
, and
BuSha
,
B. F.
,
2009
, “
An Orthotic Hand-Assistive Exoskeleton for Actuated Pinch and Grasp
,”
IEEE
35th Annual Northeast Bioengineering Conference
, Boston, MA, Apr. 3–5.
5.
Martinez
,
L. A.
,
Olaloye
,
O. O.
,
Talarico
,
M. V.
,
Shah
,
S. M.
,
Arends
,
R. J.
, and
BuSha
,
B. F.
,
2010
, “
A Power-Assisted Exoskeleton Optimized for Pinching and Grasping Motions
,”
IEEE
36th Annual Northeast Bioengineering Conference
, New York, Mar. 26–28.
6.
Worsnopp
,
T. T.
,
Peshkin
,
M. A.
,
Colgate
,
J. E.
, and
Kamper
,
D. G.
,
2007
, “
An Actuated Finger Exoskeleton for Hand Rehabilitation Following Stroke
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Noordwijk, The Netherlands, June 13–15, pp.
896
901
.
7.
Nilsson
,
M.
,
Ingvast
,
J.
,
Wikander
,
J.
, and
von Holst
,
H.
,
2012
, “
The Soft Extra Muscle System for Improving the Grasping Capability in Neurological Rehabilitation
,”
IEEE EMBS Conference on Biomedical Engineering and Sciences
(
IECBES
), Langkawi, Malaysia, Dec. 17–19, pp.
412
417
.
8.
Varalta
,
V.
,
Picelli
,
A.
,
Fonte
,
C.
,
Montemezzi
,
G.
,
La Marchina
,
E.
, and
Smania
,
N.
,
2014
, “
Effects of Contralesional Robot-Assisted Hand Training in Patients With Unilateral Spatial Neglect Following Stroke: A Case Series Study
,”
J. Neuroeng. Rehabil.
,
11
(
160
), pp.
1
6
.
9.
Sangwook
,
L.
,
Landers
,
K. A.
, and
Hyung-Soon
,
P.
,
2014
, “
Development of a Biomimetic Hand Exotendon Device (BiomHED) for Restoration of Functional Hand Movement Post-Stroke
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
4
), pp.
886
898
.
10.
Tadano
,
K.
,
Akai
,
M.
,
Kadota
,
K.
, and
Kawashima
,
K.
,
2010
, “
Development of Grip Amplified Glove Using Bi-Articular Mechanism With Pneumatic Artificial Rubber Muscle
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
2363
2368
.
11.
Feifei
,
Z.
,
Dohta
,
S.
,
Akagi
,
T.
, and
Matsushita
,
H.
,
2006
, “
Development of a Bending Actuator Using a Rubber Artificial Muscle and Its Application to a Robot Hand
,”
International Joint Conference
SICE-ICASE
, Busan, South Korea, Oct. 18–21, pp.
381
384
.
12.
Sasaki
,
D.
,
Noritsugu
,
T.
,
Takaiwa
,
M.
, and
Yamamoto
,
H.
,
2004
, “
Wearable Power Assist Device for Hand Grasping Using Pneumatic Artificial Rubber Muscle
,”
IEEE International Workshop on Robot and Human Interactive Communication
, pp.
655
660
.
13.
Kadowaki
,
Y.
,
Noritsugu
,
T.
,
Takaiwa
,
M.
,
Sasaki
,
D.
, and
Kato
,
M.
,
2011
, “
Development of Soft Power-Assist Glove and Control Based on Human Intent
,”
J. Rob. Mechatronics
,
23
(
2
), pp.
281
291
.
14.
Martinez
,
R. V.
,
Branch
,
J. L.
,
Fish
,
C. R.
,
Jin
,
L.
,
Shepherd
,
R. F.
,
Nunes
,
R. M. D.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2013
, “
Robotic Tentacles With Three-Dimensional Mobility Based on Flexible Elastomers
,”
Adv. Mater.
,
25
(
2
), pp.
205
212
.
15.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
16.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
135
143
.
17.
Polygerinos
,
P.
,
Galloway
,
K. C.
,
Savage
,
E.
,
Herman
,
M.
,
Donnell
,
K. O.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Hand Rehabilitation and Task Specific Training
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30,
IEEE
,
New York
, pp.
2913
2919
.
18.
Yap
,
H. K.
,
Lim
,
J. H.
,
Nasrallah
,
F.
,
Goh
,
J. C. H.
, and
Yeow
,
R. C.-H.
,
2015
, “
A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators With Variable Stiffness
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30,
IEEE
,
New York
, pp.
4967
4972
.
19.
Yap
,
H. K.
,
Lim
,
J. H.
,
Nasrallah
,
F.
,
Low
,
F.-Z.
,
Goh
,
J. C. H.
, and
Yeow
,
R. C.-H.
,
2015
, “
MRC-Glove: A fMRI Compatible Soft Robotic Glove for Hand Rehabilitation Application
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Singapore, Aug. 11–14,
IEEE
,
New York
, pp.
735
740
.
20.
Yap
,
H. K.
,
Ang
,
B. W. K.
,
Lim
,
J. H.
,
Goh
,
J. C. H.
, and
Yeow
,
R. C. H.
,
2016
, “
A Fabric-Regulated Soft Robotic Glove With User Intent Detection Using EMG and RFID for Hand Assistive Application
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
,
New York
, (in press).
21.
Hines
,
A. E.
,
Crago
,
P. E.
, and
Billian
,
C.
,
1995
, “
Hand Opening by Electrical Stimulation in Patients With Spastic Hemiplegia
,”
IEEE Trans. Rehabil. Eng.
,
3
(
2
), pp.
193
205
.
22.
Farrell
,
J. F.
,
Hoffman
,
H. B.
,
Snyder
,
J. L.
,
Giuliani
,
C. A.
, and
Bohannon
,
R. W.
,
2007
, “
Orthotic Aided Training of the Paretic Upper Limb in Chronic Stroke: Results of a Phase 1 Trial
,”
NeuroRehabilitation
,
22
(
2
), pp.
99
103
.
23.
Brokaw
,
E. B.
,
Black
,
I.
,
Holley
,
R. J.
, and
Lum
,
P. S.
,
2011
, “
Hand Spring Operated Movement Enhancer (HandSOME): A Portable, Passive Hand Exoskeleton for Stroke Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
4
), pp.
391
399
.
24.
Connelly
,
L.
,
Jia
,
Y.
,
Toro
,
M. L.
,
Stoykov
,
M. E.
,
Kenyon
,
R. V.
, and
Kamper
,
D. G.
,
2010
, “
A Pneumatic Glove and Immersive Virtual Reality Environment for Hand Rehabilitative Training After Stroke
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
5
), pp.
551
559
.
25.
Kamper
,
D. G.
, and
Rymer
,
W. Z.
,
2000
, “
Quantitative Features of the Stretch Response of Extrinsic Finger Muscles in Hemiparetic Stroke
,”
Muscle Nerve
,
23
(
6
), pp.
954
961
.
26.
Kamper
,
D. G.
, and
Rymer
,
W. Z.
,
2001
, “
Impairment of Voluntary Control of Finger Motion Following Stroke: Role of Inappropriate Muscle Coactivation
,”
Muscle Nerve
,
24
(
5
), pp.
673
681
.
27.
Yan
,
G.
,
Wang
,
X.
, and
Wu
,
D.
,
2013
, “
Development of Lightweight Thermoplastic Composites Based on Polycarbonate/Acrylonitrile–Butadiene–Styrene Copolymer Alloys and Recycled Carbon Fiber: Preparation, Morphology, and Properties
,”
J. Appl. Polym. Sci.
,
129
(
6
), pp.
3502
3511
.
You do not currently have access to this content.