This paper presents a linkage system designed to guide a natural ankle trajectory with the corresponding foot orientation. A six-bar linkage was designed to coordinate the joint angles of an RR chain (R denotes a revolute or hinged joint) that models the leg to achieve the desired ankle trajectory. The design is shown to be adjustable to meet a range of trajectories obtained in an individual's normal gait. Control of the foot position is obtained using a cam-driven parallel chain that has the same input as the six-bar linkage. The design of the linkage was carried out using linkage synthesis theory and optimization methods. The result is a one degree-of-freedom system that guides a natural walking movement of the leg and foot. A solid model of the complete device is presented. The results of this research provide a procedure that focuses on the kinematics and mechanical design of a device named the UCI gait mechanism.

References

References
1.
Hesse
,
S.
, and
Uhlenbrock
,
D.
,
2000
, “
A Mechanized Gait Trainer for Restoration of Gait
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
701
708
.
2.
Aoyagi
,
D.
,
Ichinose
,
W. E.
,
Harkema
,
S. J.
,
Reinkensmeyer
,
D. J.
, and
Bobrow
,
D. J.
,
2007
, “
A Robot and Control Algorithm That Can Synchronously Assist in Naturalistic Motion During Body-Weight-Supported Gait Training Following Neurologic Injury
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
387
400
.
3.
Zhou
,
S.
, and
Song
,
J.
,
2011
, “
Design and Control of Pneumatically-Powered Gait Orthosis
,”
5th International Conference on Bioinformatics and Biomedical Engineering
(
iCBBE
), Wuhan, China, May 10–12.
4.
Koceska
,
N.
,
Koceski
,
S.
,
Zobel
,
P. B.
, and
Durante
,
F.
,
2011
, “
Gait Training Using Pneumatically Actuated Robot System
,”
Advances in Robot Navigation
,
P. A.
Barrera
, ed., InTech, Rijeka, Croatia.
5.
Koceska
,
N.
, and
Koceski
,
S.
,
2013
, “
Review: Robot Devices for Gait Rehabilitation
,”
Int. J. Comput. Appl.
,
62
(
13
), pp.
1
8
.
6.
Tsuge
,
B. Y.
,
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2015
, “
Homotopy Directed Optimization to Design a Six-Bar Linkage for a Lower Limb With a Natural Ankle Trajectory
,”
ASME J. Mech. Rob.
(submitted).
7.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
128
138
.
8.
Strickland
,
E.
,
2012
, “
Good-Bye Wheelchair
,”
IEEE Spectrum
, epub.
9.
Gancet
,
J.
,
Ilzkovitz
,
M.
,
Motard
,
E.
,
Nevatia
,
Y.
,
Letier
,
P.
,
Weerdt
,
D. D.
,
Cheron
,
G.
,
Hoellinger
,
T.
,
Seetharaman
,
K.
,
Petieau
,
M.
,
Ivaneko
,
Y.
,
Molinari
,
M.
,
Pisotta
,
I.
,
Tamburella
,
F.
,
Labini
,
F. S.
,
d'Avella
,
A.
,
der Kooij
,
H. V.
,
Wang
,
L.
,
der Helm
,
F. V.
,
Wang
,
S.
,
Zanow
,
F.
,
Hauffe
,
R.
, and
Thorsteinsson
,
F.
,
2012
, “
MINDWALKER: Going One Step Further With Assistive Lower Limbs Exoskeleton for SCI Condition Subjects
,”
4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Rome, June 24–27, pp.
1794
1800
.
10.
Aoyagi
,
D.
,
Ichinose
,
W. E.
,
Reikensmeyer
,
D. J.
, and
Bobrow
,
J. E.
,
2004
, “
Human Step Rehabilitation Using a Robot Attached to the Pelvis
,”
ASME
Paper No. IMECE2004-59472.
11.
Banala
,
S. K.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2007
, “
Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients
,”
IEEE 10th International Conference on Rehabilitation Robotics
(
ICORR
), Noordwijk, The Netherlands, June 13–15, pp.
401
407
.
12.
Banala
,
S. K.
,
Kim
,
S. H.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2008
, “
Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)
,”
2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Scottsdale, AZ, Oct. 19–22, pp.
653
658
.
13.
Banala
,
S. K.
,
Kim
,
S. H.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2009
, “
Assisted Gait Training With Active Leg Exoskeleton (ALEX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
2
8
.
14.
Emken
,
J. L.
,
Wayne
,
J. H.
,
Harkema
,
S. J.
, and
Reinkensmeyer
,
D. J.
,
2006
, “
A Robotic Device for Manipulating Human Stepping
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
185
189
.
15.
Jezernik
,
S.
,
Colombo
,
G.
,
Keller
,
T.
,
Frueh
,
H.
, and
Morari
,
M.
,
2003
, “
Robotic Orthosis Lokomat: A Rehabilitation and Research Tool
,”
Int. Neuromodulation Soc.
,
6
(
2
), pp.
108
115
.
16.
Ekkelenkamp
,
R.
,
Veneman
,
J.
, and
Kooij
,
H. V. D.
,
2005
, “
Lopes: Selective Control of Gait Functions During the Gait Rehabilitation of CVA Patients
,”
9th International Conference on Rehabilitation Robotics
(
ICORR 2005
), Chicago, IL, June 28–July 1, pp.
361
364
.
17.
Agrawal
,
A.
,
Banala
,
S. K.
,
Agrawal
,
S. K.
, and
Binder-Macleaod
,
S. A.
,
2005
, “
Design of a Two Degree-of-Freedom, Ankle-Foot Orthosis for Robotic Rehabilitation
,”
9th International Conference on Rehabilitation Robotics
(
ICORR 2005
), Chicago, IL, June 28–July 1, pp.
41
44
.
18.
Sawicki
,
G. S.
, and
Ferris
,
D. P.
,
2009
, “
A Pneumatically Powered Knee-Ankle-Foot, Orthosis (KAFO) With Myoelectric Activation and Inhibition
,”
J. NeuroEng. Rehabil.
,
6
, p. 23.
19.
Kinnaird
,
C. R.
, and
Ferris
,
D. P.
,
2009
, “
Medial Gastrocnemius Myoelectric Control of a Robotic Ankle Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
31
37
.
20.
Lockhande
,
N. G.
, and
Emche
,
V. B.
,
2013
, “
Mechanical Spider by Using Klann Mechanisms
,”
Int. J. Mech. Eng. Comput. Appl.
,
1
(
5
), pp.
13
16
.
21.
Komoda
,
K.
, and
Wagatsuma
,
H.
,
2011
, “
A Study of Availability and Extensibility of Theo Jansen Mechanisms Toward Climbing Over Bumps
,”
21st Annual Conference of the Japanese Neural Network Society
, Okinawa, Japan, Dec. 15–17.
22.
Aan
,
A.
, and
Heinloo
,
M.
,
2014
, “
Analysis and Synthesis of the Walking Linkage of Theo Jansen With a Flywheel
,”
Agron. Res.
,
12
(
2
), pp.
657
662
.
23.
Brown
,
B. C.
,
2006
, “
Design of a Single-Degree-of-Freedom Biped Walking Mechanism
,” Undergraduate Honors thesis,
The Ohio State University
, Columbus, OH.
24.
Batayneh
,
W.
,
Al-Araidah
,
O.
, and
Malkawi
,
S.
,
2013
, “
Biomimetic Design of a Single DOF Stephenson III Leg Mechanism
,”
Mech. Eng. Res.
,
3
(
2
), pp.
43
50
.
25.
Angeles
,
J.
, and
Lopez-Cajun
,
C. S.
,
1991
, “
Optimization of Cam Mechanisms
,”
Springer Science
, Waterloo, ON, Canada.
26.
Unruh
,
V.
, and
Krishnaswami
,
P.
,
1995
, “
A Computer-Aided Design Technique for Semi-Automated Infinite Point Coupler Curve Synthesis of Four-Bar Linkages
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
143
149
.
27.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
2nd ed.
,
Springer
,
New York.
28.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
2001
,
Mechanism Design: Analysis and Synthesis
,
4th ed.
,
Prentice-Hall
, Upper Saddle River, NJ..
You do not currently have access to this content.