Robot-assisted minimally invasive surgery (MIS) has shown tremendous advances over the traditional techniques. To improve dexterity and back-drivability of the existing planar remote center-of-motion (RCM) mechanism, on which an active prismatic joint is required to drive the surgical tool move in–out of the patient's body, a two degrees-of-freedom (DOFs) planar RCM mechanism is proposed by constructing virtual parallelograms in this paper. The mechanism can be considered as a generalized double parallelogram; both of the actuated joints are revolute joints. This feature enhances the intrinsic back-drivability of the mechanism. The mathematical framework is introduced first to prove that the mechanism could execute RCM. Then, the inverse kinematics of the planar mechanism is solved, and the Jacobian matrix is derived in this paper. Further, the singularity and the kinematic performance based on the kinematic equations are investigated, and the workspace of the mechanism is verified. Finally, a prototype was built to test the function of the proposed RCM mechanism. The results show that the mechanism can fulfill the constraint of MIS, and it can be used as the basic element of the active manipulator in an MIS robot.

References

References
1.
Mayer
,
H.
,
Nagy
,
I.
,
Knoll
,
A.
,
Schirmbeck
,
E. U.
, and
Bauernschimtt
,
R.
,
2004
, “
The Endo[PA]R System for Minimally Invasive Robotic Surgery
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Sendai, Japan, Sept. 28–Oct. 2, pp.
3637
3642
.
2.
Ghodoussi
,
M.
,
Butner
,
E.
, and
Wang
,
Y. L.
,
2002
, “
Robotic Surgery—The Transatlantic Case
,” 2002
IEEE
International Conference on Robotics and Automation
, Washington, DC, Vol.
2
, pp.
1882
1888
.
3.
Guthart
,
G. S.
, and
Salisbury
,
J. K.
, Jr.
,
2000
, “
The Intuitive Telesurgery System: Overview and Application
,” 2000
IEEE
International Conference on Robotics and Automation
, San Francisco, CA, pp.
618
621
.
4.
Locke
,
R. C. O.
, and
Patel
,
R. V.
,
2007
, “
Optimal Remote Center-of-Motion Location for Robotics-Assisted Minimally Invasive Surgery
,”
IEEE
International Conference on Robotics and Automation
, Rome, Italy, Apr. 10–14, pp.
1900
1905
.
5.
Taylor
,
R. H.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.
6.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
145
.
7.
Mitsuishi
,
M.
,
Sugita
,
N.
,
Baba
,
S.
,
Takahashi
,
H.
,
Morita
,
A.
,
Sora
,
S.
, and
Mochizuki
,
R.
,
2008
, “
A Neurosurgical Robot for the Deep Surgical Field Characterized by an Offset-Type Forceps and Natural Input Capability
,”
39th International Symposium on Robotics
, Seoul, Korea, Oct. 15–17, pp.
915
920
.
8.
Schena
,
B. M.
,
2008
, “
Mechanically Decoupled Capstan Drive
,”
U.S. Patent No. US7391173 B2
.
9.
Berkelman
,
P.
, and
Ma
,
J.
,
2006
, “
A Compact, Modular, Teleoperated Robotic Minimally Invasive Surgery System
,”
IEEE
BioRob Conference
, Pisa, Italy, Feb. 20–22, pp.
702
707
.
10.
Yip
,
H. M.
,
Li
,
P.
,
Alarcon
,
D. N.
,
Wang
,
Z.
, and
Liu
,
Y. H.
,
2014
, “
A New Circular-Guided Remote Center of Motion Mechanism for Assistive Surgical Robots
,” 2014
IEEE
International Conference on Robotics and Biomimetic
, Bali, Indonesia, Dec. 5–10, pp.
217
222
.
11.
Zhang
,
X. L.
, and
Nelson
,
C. A.
,
2008
, “
Kinematic Analysis and Optimization of a Novel Robot for Surgical Tool Manipulation
,”
ASME J. Med. Dev.
,
2
(
2
), p.
021003
.
12.
Zemiti
,
N.
,
Morel
,
G.
,
Ortmaier
,
T.
, and
Bonnet
,
N.
,
2007
, “
Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery
,”
IEEE/ASME Trans. Mechatronics
,
12
(
2
), pp.
143
153
.
13.
Lum
,
M. J. H.
,
Friedman
,
D. C. W.
,
Sankaranarayanan
,
G.
,
King
,
H.
,
Fodero
,
K.
,
Leuschke
,
R.
,
Hannaford
,
B.
,
Rosen
,
J.
, and
Sinanan
,
M. N.
,
2009
, “
The RAVEN: Design and Validation of a Telesurgery System
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1183
1197
.
14.
Molaei
,
A.
,
Abedloo
,
E.
,
Taghirad
,
H. D.
, and
Marvi
,
Z.
,
2015
, “
Kinematics and Workspace Analysis of Diamond: An Innovative Eye Surgery Robot
,”
23th Iranian Conference on Electrical Engineering
, Tehran, Iran, May 10–14, pp.
882
887
.
15.
Taylor
,
R. H.
,
Funda
,
J.
,
Eldridge
,
B.
,
Gomory
,
S.
,
Gruben
,
K.
,
LaRose
,
D.
,
Talamini
,
M.
,
Kavoussi
,
L.
, and
Anderson
,
J.
,
1995
, “
A Telerobotic Assistant for Laparoscopic Surgery
,”
Eng. Med. Biol. Mag.
,
14
(
3
), pp.
279
288
.
16.
Sackier
,
J. M.
, and
Wang
,
Y.
,
1994
, “
Robotically Assisted Laparoscopic Surgery. From Concept to Development
,”
Surg. Endoscopy
,
8
(
1
), pp.
63
66
.
17.
Rosen
,
J.
,
Brown
,
J. D.
,
Chang
,
L.
,
Barreca
,
M.
,
Sinanan
,
M.
, and
Hannaford
,
B.
,
2002
, “
The BlueDRAGON—A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In Vivo
,”
Internaitonal Conference on Robotics and Automation
, Washington, DC, pp.
1876
1881
.
18.
Nowlin
,
W. C.
,
Guthart
,
G. S.
,
Salisbury
,
J. K.
, and
Niemeyer
,
G. D.
,
2006
, “
Repositioning and Reorientation of Master/Slave Relationship in Minimally Invasive Telesurgery
,” U.S. Patent No. US7087049B2.
19.
Taylor
,
R.
,
Jensen
,
P.
,
Whitcomb
,
L.
,
Barnes
,
A.
,
Kumar
,
R.
,
Stoianovici
,
D.
,
Gupta
,
P.
,
Wang
,
Z. X.
,
Dejuan
,
E.
, and
Kavoussi
,
L.
,
1999
, “
A Steady-Hand Robotic System for Microsurgical Augmentation
,”
Int. J. Rob. Res.
,
18
(
12
), pp.
1201
1210
.
20.
Hadavand
,
M.
,
Naish
,
M. D.
, and
Patel
,
R. V.
,
2014
, “
A Parallel Remote Center of Motion Mechanism for Needle-Based Medical Interventions
,” 5th
IEEE RAS and EMBS
International Conference on Biomedical Robotics and Biomechatronics
, Sao Paulo, Brazil, Aug. 12–15, pp.
1
6
.
21.
Kuo
,
C. H.
, and
Dai
,
J. S.
,
2009
, “
Robotics for Minimally Invasive Surgery: A Historical Review From the Perspective of Kinematics
,”
International Symposium on History of Machines and Mechanisms
, Tainan, Taiwan, pp.
337
354
.
22.
Haber
,
G. P.
,
White
,
M. A.
,
Autorino
,
R.
,
Escobar
,
P. F.
,
Kroh
,
M. D.
,
Chalikonda
,
S.
,
Khanna
,
R.
,
Forest
,
S.
,
Yang
,
B.
,
Altunrende
,
F.
,
Stein
,
R. J.
, and
Kaouk
,
J. H.
,
2010
, “
Novel Robotic da Vinci Instruments for Laparoendoscopic Single-Site Surgery
,”
Urology
,
76
(
6
), pp.
1279
1282
.
23.
Zhou
,
N. X.
,
Chen
,
J. Z.
,
Liu
,
Q. D.
,
Zhang
,
X. D.
,
Wang
,
Z. F.
,
Ren
,
S. Y.
, and
Chen
,
X. F.
,
2011
, “
Outcomes of pancreatoduodenectomy with robotic surgery versus open surgery
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
7
(2), pp.
131
137
.
24.
Hanly
,
E. J.
, and
Talamini
,
M. A.
,
2004
, “
Robotic Abdominal Surgery
,”
Am. J. Surg.
,
188
(
4
), pp.
19
26
.
25.
Baumann
,
R.
, and
Clavel
,
R.
,
1998
, “
Haptic Interface for Virtual Reality Based Minimally Invasive Surgery Simulation
,” 1998
IEEE
International Conference on Robotics and Automation
, Leuven, Belgium, May 16–20, pp.
381
386
.
26.
Zong
,
G. H.
,
Pei
,
X.
,
Yu
,
J. J.
, and
Bi
,
S. S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1585
1595
.
27.
Bai
,
G. C.
,
Qi
,
P.
,
Althoefer
,
K.
,
Li
,
D. L.
,
Kong
,
X. W.
, and
Dai
,
J. S.
,
2015
, “
Kinematic Analysis of a Mechanism With Dual Remote Center of Motion and Its Potential Application
,”
ASME
Paper No. DETC2015-47118.
28.
Gijbels
,
A.
,
Reynaerts
,
D.
, and
Poorten
,
E. B.
,
2014
, “
Design of 4-DOF Parallelogram-Based RCM Mechanisms With a Translational DOF Implemented Distal From the End-Effector
,”
Mech. Mach. Sci.
,
22
(
1
), pp.
103
111
.
29.
Li
,
J. M.
,
Wang
,
S. X.
,
Wang
,
X. F.
, and
He
,
C.
,
2010
, “
Optimization of a Novel Mechanism for a Minimally Invasive Surgery Robot
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
6
, pp.
83
90
.
30.
Li
,
J. M.
,
Wang
,
S. X.
,
Wang
,
X. F.
,
He
,
C.
, and
Zhang
,
L. A.
,
2010
, “
Development of a Novel Mechanism for Minimally Invasive Surgery
,”
International Conference on Robotics and Biomimetics
, Tianjin, China, Dec. 14–18, pp.
1370
1375
.
31.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
8
(2), pp.
127
145
.
32.
Li
,
J. M.
,
Zhang
,
G. K.
,
Muller
,
A.
, and
Wang
,
S. X.
,
2013
, “
A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091009
.
33.
Hadavand
,
M.
,
Mirbagheri
,
A.
,
Behzadipour
,
S.
, and
Farahmand
,
F.
,
2013
, “
A Novel Remote Center of Motion Mechanism for the Force-Reflective Master Robot of Haptic Tele-Surgery Systems
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
10
(
2
), pp.
129
139
.
34.
Cooper
,
T. G.
, and
Solomon
,
T. R.
,
2011
, “
Offset Remote Center Manipulator for Robotic Surgery
,”
U.S. Patent No. US8062288 B2
.
35.
Tsai
,
L. W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
36.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
.
37.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
You do not currently have access to this content.