This paper describes an improved design of an external fixator. The new fixator comprises 13 parts which are assembled together. The proposed device materials consist of polyether ether-ketone (PEEK) and stainless steel 316L. The design was subjected to finite-element analysis, and a working model was manufactured and subjected to cyclic mechanical testing. The finite-element analysis showed that the maximum stress was 242.9 MPa and this was less than the yield strength and the fatigue endurance limits for the selected materials. Mechanical testing showed that testing reached run-out of 170,000 cycles with no cracks or damage visible in the device parts.

References

References
1.
Houshian
,
S.
,
Jing
,
S. S.
,
Chikkamuniyappa
,
C.
,
Kazemian
,
G. H.
, and
Tehrani
,
M. E.
,
2013
, “
Management of Posttraumatic Proximal Interphalangeal Joint Contracture
,”
J. Hand Surg. Am.
,
38
(
8
), pp.
1651
1658
.
2.
Salafia
,
A.
, and
Chauhan
,
G.
,
1997
, “
Joshi External Stabilising System (JESS) in Proximal Interphalangeal Joint (PIP) Contractures in Leprosy
,”
Indian J. Lepr.
,
69
(
4
), pp.
331
340
.
3.
Messina
,
A.
, and
Messina
,
J.
,
1993
, “
The Continuous Elongation Treatment by the TEC Device for Severe Dupuytren's Contracture of the Fingers
,”
J. Plast. Reconstr. Surg.
,
92
(
1
), pp.
84
90
.
4.
Fahmy
,
N. R.
,
1990
, “
The Stockport Serpentine Spring System for the Treatment of Displaced Comminuted Intra-Articular Phalangeal Fractures
,”
J. Hand Surg.
,
15
(
3
), pp.
303
311
.
5.
Hodgkinson
,
P. D.
,
1994
, “
Use of Skeletal Traction to Correct the Flexed PIP Joint in Dupuytren's Disease
,”
J. Hand Surg. Br.
,
19
(
4
), pp.
534
537
.
6.
Neil
,
C. N.
, and
Messina
,
J. C.
,
1998
, “
The Use of Skeletal Traction in the Treatment of Severe Primary Dupuytren's Disease
,”
J. Bone Jt. Surg., Br.
,
80
, pp.
126
129
.
7.
Kasabian
,
A.
,
McCarthy
,
J.
, and
Karp
,
N.
,
1998
, “
Use of a Multiplanar Distracter for the Correction of a Proximal Interphalangeal Joint Contracture
,”
J. Ann. Plast. Surg.
,
40
(
4
), pp.
378
381
.
8.
Ng
,
C. Y.
, and
Oliver
,
C. W.
,
2009
, “
Fractures of the Proximal Interphalangeal Joints of the Fingers
,”
J. Bone Jt. Surg., Br.
,
91
(
6
), pp.
705
712
.
9.
Hotchkiss
,
R.
,
Hotchkiss
,
K.
, and
Woodward
,
A.
,
1994
, “
Dynamic Finger Support
,”
U.S. Patent No. 5,376,091
.
10.
Bonaspetti
,
G.
,
Volpi
,
P.
,
De Filippo
,
G.
,
Damiani
,
L.
, and
Pazzaglia
,
U. E.
,
1999
, “
L'utilizzo del Compass PIP Joint Hinge in Pazienti affetti da morbo di Dupuytren’ con Retrazione in Flessione dell'articolazione Interfalangea Prossimale
,”
Minerva Ortoped. Traumatologica
,
50
(
3
), pp.
103
106
(in Italian).
11.
Bain
,
G. I.
,
Mehta
,
J. A.
,
Heptinstall
,
R. J.
, and
Bria
,
M.
,
1998
, “
Dynamic External Fixation for Injuries of the Proximal Interphalangeal Joint
,”
J. Bone Jt. Surg., Br.
,
80
(
6
), pp.
1014
1019
.
12.
Houshian
,
S.
,
Gynning
,
B.
, and
Schrøder
,
H. A.
,
2002
, “
Chronic Flexion Contracture of Proximal Interphalangeal Joint Treated With the Compass Hinge External Fixator. A Consecutive Series of 27 Cases
,”
J. Hand Surg.
,
27
(
4
), pp.
356
358
.
13.
Feldscher
,
S. B.
, and
Blank
,
J. E.
,
2002
, “
Management of a Proximal Interphalangeal Joint Fracture Dislocation With a Compass Proximal Interphalangeal Joint Hinge and Therapy: A Case Report
,”
J. Hand Ther.
,
15
(
3
), pp.
266
273
.
14.
Lahiri
,
A.
,
Mahmoud
,
M. M.
, and
Titley
,
O. G.
,
2007
, “
Management of Proximal Interphalangeal Joint Disorders With the Compass Hinge Dynamic External Fixator
,”
The British Society for Surgery of the Hand Annual Scientific Meeting
, London, UK, Nov. 1–2.
15.
Youssef
,
M. M.
,
Shepherd
,
D. E. T.
, and
Titley
,
O. G.
,
2015
, “
Engineering Analysis of a Failed Compass Proximal Interphalangeal (PIP) Joint Hinge
,”
Biomed. Eng.: Appl. Basis Commun.
,
27
(
2
), p.
1550013
.
16.
Walker
,
P. S.
, and
Erkman
,
M. J.
,
1975
, “
Laboratory Evaluation of a Metal Plastic Type of Metacarpophalangeal Joint Prosthesis
,”
Clin. Orthop. Relat. Res.
,
112
, pp.
349
356
.
17.
Lee
,
J. W.
, and
Rim
,
K.
,
1990
, “
Maximum Finger Force Prediction Using a Planar Simulation of the Middle Finger
,”
J. Eng. Med.
,
204
(
38
), pp.
169
178
.
18.
Reese
,
N. B.
, and
Bandy
,
W. D.
,
2013
,
Joint Range of Motion and Muscle Length Testing
,
Elsevier Health Sciences
,
St. Louis, MO
, p.
472
.
19.
Joyce
,
T. J.
, and
Unsworth
,
A.
,
2000
, “
The Design of a Finger Wear Simulator and Preliminary Results
,”
Proc. Inst. Mech. Eng., Part H
,
214
(
5
), pp.
519
526
.
20.
Victrex, 2016
, ”
VICTREX® PEEK, Material Properties Guide
,” Victrex plc, Lancashire, UK, http://www.victrex.com/en/victrex-peek
21.
Carpenter Technology Corp.
,
2016
, “
Carpenter BioDur™ 316LS Stainless Medical Implant Alloy, 90% Cold Worked
,”
MatWeb
LLC, Blacksburg, VA.
22.
HPC Gears
,
2013
, “
Catalogue C14 Gear Transmission Products
,” HPC Gears Ltd., Chesterfield, UK.
23.
Tilley
,
A. R.
, and
Associates
,
H. D.
,
2002
,
The Measure of Man and Woman: Human Factors in Design
,
Wiley
,
New York
, pp.
22
25
.
24.
BS EN ISO
,
2010
, “
Basic Human Body Measurements for Technological Design: Body Measurement Definitions and Landmarks
,”
British Standards Institute
,
London
, Standard No. 7250-1.
25.
Peebles
,
L.
, and
Norris
,
B.
,
1998
, “
Adult Data: The Handbook of Adult Anthropometric and Strength Measurements: Data for Design Safety
,”
Department of Trade and Industry
,
London, UK
, pp.
134
142
.
26.
Alexander
,
B.
, and
Viktor
,
K.
,
2010
, “
Proportions of Hand Segments
,”
Int. J. Morphol.
,
28
(
3
), pp.
755
758
.
27.
StrataSys
,
2016
, “
Laser Sintering Materials
,”
StrataSys Direct Manufacturing
, Valencia, CA.
28.
Trotignon
,
J. P.
,
Verdu
,
J.
,
Martin
,
C. H.
, and
Morel
,
E.
,
1993
, “
Fatigue Behaviour of Some Temperature-Resistant Polymers
,”
J. Mater. Sci.
,
28
(
8
), pp.
2207
2213
.
You do not currently have access to this content.