The vestibular system of the inner ear acts as a six degree-of-freedom (DOF) motion sensor of head rotational velocity and gravitoinertial acceleration (GIA), the latter being the sum of acceleration due to gravity and linear/translational head movement. There are two classes of sensors in the ear: three mutually orthogonal rotation sensors (semicircular canals, SCCs) and two GIA sensors (utricle and saccule, collectively called otolith end organs). Each of the inner ear's five inertial sensors encodes motion using pulse frequency modulation (PFM) of afferent neuron firing rates above and below naturally nonzero spontaneous activity rates [1].

Sensation of head motion drives ocular, postural, and autonomic reflexes that help to maintain steady vision, stable gait, and balance. Individuals with profound bilateral vestibular deficiency (BVD) suffer reduced quality of life due to poor visual acuity during head movement, illusory motion of visible objects during head movements,...

References

References
1.
Sun
,
D. Q.
,
Ward
,
B. K.
,
Semenov
,
Y. R.
,
Carey
,
J. P.
, and
Della Santina
,
C. C.
,
2014
, “
Bilateral Vestibular Deficiency
,”
JAMA Otolaryngol. Neck Surg.
,
140
(
6
), pp.
527
534
.
2.
Fridman
,
G. Y.
, and
Della Santina
,
C. C.
,
2012
, “
Progress Toward Development of a Multichannel Vestibular Prosthesis for Treatment of Bilateral Vestibular Deficiency
,”
Anat. Rec. Adv. Integr. Anat. Evol. Biol.
,
295
(
11
), pp.
2010
2029
.
3.
Gong
,
W.
, and
Merfeld
,
D. M.
,
2002
, “
System Design and Performance of a Unilateral Horizontal Semicircular Canal Prosthesis
,”
IEEE Trans. Biomed. Eng.
,
49
(
2
), pp.
175
181
.
4.
Della Santina
,
C. C.
,
Migliaccio
,
A.
, and
Patel
,
A. H.
,
2007
, “
A Multichannel Semicircular Canal Neural Prosthesis Using Electrical Stimulation to Restore 3-D Vestibular Sensation
,”
IEEE Trans. Biomed. Eng.
,
54
(
6 Pt. 1
), pp.
1016
1030
.
5.
Chiang
,
B.
,
Fridman
,
G. Y.
,
Chenkai
,
D.
,
Rahman
,
M. A.
, and
Della Santina
,
C. C.
,
2011
, “
Design and Performance of a Multichannel Vestibular Prosthesis That Restores Semicircular Canal Sensation in Rhesus Monkey
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
5
), pp.
588
598
.
6.
Nie
,
K.
,
Ling
,
L.
,
Bierer
,
S. M.
,
Kaneko
,
C. R. S.
,
Fuchs
,
A. F.
,
Oxford
,
T.
,
Rubinstein
,
J. T.
, and
Phillips
,
J. O.
,
2013
, “
An Experimental Vestibular Neural Prosthesis: Design and Preliminary Results With Rhesus Monkeys Stimulated With Modulated Pulses
,”
IEEE Trans. Biomed. Eng.
,
60
(
6
), pp.
1685
1692
.
7.
Hayden
,
R.
,
Sawyer
,
S.
,
Frey
,
E.
,
Mori
,
S.
,
Migliaccio
,
A. A.
, and
Della Santina
,
C. C.
,
2011
, “
Virtual Labyrinth Model of Vestibular Afferent Excitation Via Implanted Electrodes: Validation and Application to Design of a Multichannel Vestibular Prosthesis
,”
Exp. Brain Res.
,
210
(3), pp.
623
640
.
8.
Robblee
,
L. S.
, and
Rose
,
T. L.
,
1990
, “
Electrochemical Guidelines for Selection of Protocols and Electrode Materials for Neural Stimulation
,”
Neural Prostheses: Fundamental Studies
,
W. F.
Agnew
and
D. B.
McCreery
, eds.,
Prentice Hall
,
Englewood Cliffs, NJ
, pp.
26
66
.
9.
Desai
,
S. S.
,
Zeh
,
C.
, and
Lysakowski
,
A.
,
2005
, “
Comparative Morphology of Rodent Vestibular Periphery—I: Saccular and Utricular Maculae
,”
J. Neurophysiol.
,
93
(1), pp.
251
266
.
10.
Goldberg
,
J. M.
,
Desmadryl
,
G.
,
Baird
,
R. A.
, and
Fernández
,
C.
,
1990
, “
The Vestibular Nerve of the Chinchilla—IV: Discharge Properties of Utricular Afferents
,”
J. Neurophysiol.
,
63
(
4
), pp.
781
790
.
11.
Hageman
,
K. N.
,
Kalayjian
,
Z. K.
,
Tejada
,
F.
,
Chiang
,
B.
,
Rahman
,
M. A.
,
Fridman
,
G. Y.
,
Dai
,
C.
,
Pouliquen
,
P. O.
,
Georgiou
,
J.
,
Della Santina
,
C. C.
, and
Andreou
,
A. G.
,
2015
, “
A CMOS Neural Interface for a Multichannel Vestibular Prosthesis
,”
IEEE Trans. Biomed. Circuits Syst.
,
10
(
2
), pp.
269
279
.
You do not currently have access to this content.