It is difficult to achieve a stably delicate operation in manual microsurgery, and the aim of this paper is to evaluate the robotic trephination that can open a promising perspective for the development of robotic microsurgical system for keratoplasty. A robot for corneal trephination integrating a force/torque sensor is designed based on manual trephine action. The manual experiments and the robotic experiments about penetrating trephination are performed in porcine eyes. The expected values of operational parameters that are references to the robotic trephination are obtained from the manual experiments using probability density functions (PDFs), including linear velocity, angular velocity, and rotating angle. Considering the meanings of the forces/torques, the results of the manual and robotic experiments such as trephine forces/torques and photomicrographs are compared to evaluate the effectiveness of robotic trephination. The manual trephination shows some randomness and this leads to large fluctuations in the trephine forces/torques during the surgery, but the robot may improve overall outcome of the graft, as it is able to carry out the operation stably and produce a uniform cutting margin. There is potential to improve the biomechanical properties in the delicate microsurgery by using the trephine robot and such devices can assist the surgeon to achieve a consistently high-quality result.

References

References
1.
Taylor
,
R. H.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.
2.
Hu
,
Y.
,
Li
,
D.
,
Yang
,
Y.
, and
Sun
,
X.
,
2007
, “
Integration of Microsensor for Microsurgery Robot's End-Effector
,”
Front. Mech. Eng. China
,
2
(
2
), pp.
205
209
.
3.
Jafarinasab
,
M. R.
,
Feizi
,
S.
,
Javadi
,
M. A.
, and
Hashemloo
,
A.
,
2011
, “
Graft Biomechanical Properties After Penetrating Keratoplasty Versus Deep Anterior Lamellar Keratoplasty
,”
Curr. Eye Res.
,
36
(
5
), pp.
417
421
.
4.
Abdelkader
,
A.
,
2013
, “
Influence of Different Keratoplasty Techniques on the Biomechanical Properties of the Cornea
,”
Acta Ophthalmol.
,
91
(
7
), pp.
e567
e572
.
5.
Bourne
,
W. M.
,
1983
, “
Morphologic and Functional Evaluation of the Endothelium of Transplanted Human Corneas
,”
Tr. Am. Ophth. Soc.
,
81
, pp.
403
450
.
6.
Moshirfar
,
M.
,
Meyer
,
J. J.
, and
Kang
,
P. C.
,
2009
, “
A Comparison of Three Methods for Trephining Donor Corneal Buttons: Endothelial Cell Loss and Microscopic Ultrastructural Evaluation
,”
Curr. Eye Res.
,
34
(
11
), pp.
939
944
.
7.
Jonas
,
J. B.
,
2003
, “
Intrastromal Lamellar Femtosecond Laser Keratoplasty With Superficial Flap
,”
Brit. J. Ophthalmol.
,
87
(
9
), p.
1195
.
8.
Seitz
,
B.
, and
Brünner
,
H.
,
2005
, “
Inverse Mushroom-Shaped Nonmechanical Penetrating Keratoplasty Using a Femtosecond Laser
,”
Am. J. Ophthalmol.
,
139
(
5
), pp.
941
944
.
9.
Soong
,
H. K.
, and
Malta
,
J. B.
,
2009
, “
Femtosecond Lasers in Ophthalmology
,”
Am. J. Ophthalmol.
,
147
(
2
), pp.
189
197
.
10.
Botchway
,
S. W.
,
Reynolds
,
P.
,
Parker
,
A. W.
, and
O'Neill
,
P.
,
2010
, “
Use of Near Infrared Femtosecond Lasers as Sub-Micron Radiation Microbeam for Cell DNA Damage and Repair Studies
,”
Mutat. Res.
,
704
(
1–3
), pp.
38
44
.
11.
Korff
,
A.
,
Follmann
,
A.
,
Fuürtjes
,
T.
,
Habor
,
D.
,
Kunze
,
S. C.
,
Schmieder
,
K.
, and
Radermacher
,
K.
,
2011
, “
Concept and Evaluation of a Synergistic Controlled Robotic Instrument for Trepanation in Neurosurgery
,”
IEEE Trans. Rob. Autom.
,
47
(
10
), pp.
6258
6263
.
12.
Yang
,
Y.
,
Xu
,
C.
,
Deng
,
S.
, and
Xiao
,
J.
,
2012
, “
Insertion Force in Manual and Robotic Corneal Suturing
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
8
(
1
), pp.
25
33
.
13.
Ferre
,
M.
,
Galiana
,
I.
, and
Aracil
,
R.
,
2011
, “
Design of a Lightweight, Cost Effective Thimble-Like Sensor for Haptic Applications Based on Contact Force Sensors
,”
Sensors
,
11
(
12
), pp.
11495
11509
.
14.
Elsheikh
,
A.
,
Alhasso
,
D.
, and
Rama
,
P.
,
2008
, “
Biomechanical Properties of Human and Porcine Corneas
,”
Exp. Eye Res.
,
86
(
5
), pp.
783
790
.
15.
Leung
,
L.
,
Ko
,
M.
, and
Lam
,
D.
,
2014
, “
Individual-Specific Tonometry on Porcine Eyes
,”
Med. Eng. Phys.
,
36
(
1
), pp.
96
101
.
16.
Galiana
,
I.
,
Bielza
,
M.
, and
Ferre
,
M.
,
2010
, “
Estimation of Normal and Tangential Manipulation Forces by Using Contact Force Sensors
,”
Haptics: Generating and Perceiving Tangible Sensations
(Lecture Notes in Computer Science),
Springer
,
Berlin
, pp.
65
72
.
17.
Craig
,
J. J.
,
1989
,
Introduction to Robotics: Mechanics and Control
,
Addison-Wesley Longman
,
Boston, MA
, pp.
125
130
.
18.
Pflugfelder
,
S. C.
,
Roussel
,
T. J.
,
Denham
,
D.
,
Feuer
,
W.
,
Mandelbaum
,
S.
, and
Parel
,
J. M.
,
1992
, “
Photogrammetric Analysis of Corneal Trephination
,”
Arch. Ophthalmol.
,
110
(
8
), pp.
1160
1166
.
19.
Brett
,
P.
,
Du
,
X.
,
Zoka Assadi
,
M.
,
Proops
,
D.
,
Reid
,
A.
, and
Coulson
,
C.
,
2012
, “
Mechatronic Hand-Held Surgical Robots
,”
Mechatronics and Machine Vision in Practice
, 2012 19th International Conference, Auckland, New Zealand, Nov. 28–30, pp.
447
449
.
20.
Abdelkader
,
A.
, and
Elewah
,
H. E.
,
2010
, “
Confocal Microscopy of Corneal Wound Healing After Deep Lamellar Keratoplasty in Rabbits
,”
Arch. Ophthalmol.
,
128
(
1
), pp.
75
80
.
21.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.
22.
Okamura
,
A. M.
,
Simone
,
C.
, and
O'Leary
,
M. D.
,
2004
, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
,
51
(
10
), pp.
1707
1716
.
You do not currently have access to this content.