Cancellous bone screws are used to achieve good pull-out characteristics when connected to cancellous bone. This study examines some screw characteristics, including pitch and inner diameter, using a model of cancellous bone with a range of bone apparent densities (ADs). This was achieved using bone geometry based on microCT-scanned cancellous bone and converted into a geometric model using mimics® software. The finite element (FE) models were produced in ansys®. The calculated reaction force for pull-out of 0.2 mm shows the influence of design parameters. Change in the proximal half angle increased the stiffness by about 15% in line with the experimental findings of others. An increase in pull-out reaction force with an increase in bone AD was also observed. However, when a particular screw geometry in lower AD bone was modeled and then rotated through 180 deg on plan, a significant reduction in reaction force was noted. Further models with screws of similar geometry in the same location showed similar reductions in reaction force and hence pull-out stiffness. Examination of the geometry of the bone/screw interface indicates that in certain positions there is little cancellous bone to support the implant—leading to low pull-out reaction forces, which is very difficult to predict. The study also examined the effect of increasing the bone stiffness adjacent to the implant, and concluded that, even in bone of low AD, increases in pull-out stiffness might be achieved.

References

References
1.
Asnis
,
S. E.
, and
Kyle
,
R. F.
,
1996
,
Cannulated Screw Fixation: Principles and Operative Techniques
,
Springer Verlag
,
Berlin
.
2.
Chapman
,
J.
,
Harrington
,
R.
,
Lee
,
K.
,
Anderson
,
P.
,
Tencer
,
A.
, and
Kowalski
,
D.
,
1996
, “
Factors Affecting the Pullout Strength of Cancellous Bone Screws
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
391
398
.
3.
Brown
,
C.
,
Sinclair
,
R.
,
Day
,
A.
,
Hess
,
B.
, and
Procter
,
P.
,
2013
, “
An Approximate Model for Cancellous Bone Screw Fixation
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
4
), pp.
443
450
.
4.
Ruffoni
,
D.
,
Muller
,
R.
, and
van Lenthe
,
G. H.
,
2012
, “
Mechanisms of Reduced Implant Stability in Osteoporotic Bone
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
313
323
.
5.
Wirth
,
A. J.
,
Goldhahn
,
J.
,
Flaig
,
C.
,
Arbenz
,
P.
,
Müller
,
R.
, and
van Lenthe
,
G. H.
,
2011
, “
Implant Stability is Affected by Local Bone Microstructural Quality
,”
Bone
,
49
(
3
), pp.
473
478
.
6.
Stoesz
,
M. J.
,
Jastifer
,
J. R.
,
Chess
,
J. L.
,
Patel
,
B.
, and
Gustafson
,
P. A.
,
2012
, “
Surgeon Perception of Cancellous Screw Fixation
,”
ASME
Paper No. SBC2012-80808.
7.
WHO
,
2003
, “
Prevention and Management of Osteoporosis: Report of a WHO Scientific Group
,”
World Health Organization, Geneva
,
Switzerland
, WHO Technical Report No. 921.
8.
Gausepohl
,
T.
,
Möhring
,
R.
,
Pennig
,
D.
, and
Koebke
,
J.
,
2001
, “
Fine Thread Versus Coarse Thread: A Comparison of the Maximum Holding Power
,”
Injury
,
32
(
S4
), pp.
1
7
.
9.
Fensky
,
F.
,
Nüchtern
,
J.
,
Kolb
,
J.
,
Huber
,
S.
,
Rupprecht
,
M.
,
Jauch
,
S.
,
Sellenschloh
,
K.
,
Püschel
,
K.
,
Morlock
,
M.
, and
Rueger
,
J.
,
2013
, “
Cement Augmentation of the Proximal Femoral Nail Antirotation for the Treatment of Osteoporotic Pertrochanteric Fractures—A Biomechanical Cadaver Study
,”
Injury
,
44
(
6
), pp.
802
807
.
10.
Larsson
,
S.
,
2006
, “
Cement Augmentation in Fracture Treatment
,”
Scand. J. Surg.
,
95
(
2
), pp.
111
118
.
11.
Eriksson
,
F.
,
Mattsson
,
P.
, and
Larsson
,
S.
,
2002
, “
The Effect of Augmentation With Resorbable or Conventional Bone Cement on the Holding Strength for Femoral Neck Fracture Devices
,”
J. Orthop. Trauma
,
16
(
5
), pp.
302
310
.
12.
Day
,
J. S.
,
Ding
,
M.
,
Bednarz
,
P.
,
Van Der Linden
,
J. C.
,
Mashiba
,
T.
,
Hirano
,
T.
,
Johnston
,
C. C.
,
Burr
,
D. B.
,
Hvid
,
I.
,
Sumner
,
D. R.
, and
Weinans
,
H.
,
2004
, “
Bisphosphonate Treatment Affects Trabecular Bone Apparent Modulus Through Micro-Architecture Rather Than Matrix Properties
,”
J. Orthop. Res.
,
22
(
3
), pp.
465
471
.
13.
Aspenberg
,
P.
,
Genant
,
H. K.
,
Johansson
,
T.
,
Nino
,
A. J.
,
See
,
K.
,
Krohn
,
K.
,
García Hernández
,
P. A.
,
Recknor
,
C. P.
,
Einhorn
,
T. A.
, and
Dalsky
,
G. P.
,
2010
, “
Teriparatide for Acceleration of Fracture Repair in Humans: A Prospective, Randomized, Double Blind Study of 102 Postmenopausal Women With Distal Radial Fractures
,”
J. Bone Miner. Res.
,
25
(
2
), pp.
404
414
.
14.
Garrison
,
K. R.
,
Shemilt
,
I.
,
Donell
,
S.
,
Ryder
,
J. J.
,
Mugford
,
M.
,
Harvey
,
I.
,
Song
,
F.
, and
Alt
,
V.
,
2010
, “
Bone Morphogenetic Protein (BMP) for Fracture Healing in Adults
,”
Cochrane Database Syst. Rev.
,
6
(
6
), p.
CD006950
.
15.
Procter
,
P.
,
Bennani
,
P.
,
Brown
,
C.
,
Arnoldi
,
J.
,
Pioletti
,
D.
, and
Larsson
,
S.
,
2015
, “
Variability of the Pullout Strength of Cancellous Bone Screws With Cement Augmentation
,”
Clin. Biomech.
,
30
(
5
), pp.
500
506
.
16.
Hughes
,
C. M.
,
2014
, “
A Finite Element Modelling Strategy for Suture Anchor Devices
,” Ph.D. thesis, Brunel University, Uxbridge, UK.
17.
Bennani-Kamane
,
P.
,
2012
, “
Finite Element Modelling of Screw Fixation in Augmented and Non-Augmented Cancellous Bone
,” Ph.D. thesis, Brunel University, Uxbridge, UK.
18.
McDonnell
,
P.
,
Harrison
,
N.
,
Lohfeld
,
S.
,
Kennedy
,
O.
,
Zhang
,
Y.
, and
McHugh
,
P. E.
,
2010
, “
Investigation of the Mechanical Interaction of the Trabecular Core With an External Shell Using Rapid Prototype and Finite Element Models
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
1
), pp.
63
76
.
19.
Scherf
,
H.
, and
Tilgner
,
R.
,
2009
, “
A New High-Resolution Computed Tomography (CT) Segmentation Method for Trabecular Bone Architectural Analysis
,”
Am. J. Phys. Anthropol.
,
140
(
1
), pp.
39
51
.
20.
Coleman
,
M. N.
, and
Colbert
,
M. W.
,
2007
, “
CT Thresholding Protocols for Taking Measurements on Three-Dimensional Models
,”
Am. J. Phys. Anthropol.
,
133
(
1
), pp.
723
725
.
21.
Kim
,
C. H.
,
Zhang
,
H.
,
Mikhail
,
G.
,
Von Stechow
,
D.
,
Müller
,
R.
,
Kim
,
H. S.
, and
Guo
,
X. E.
,
2007
, “
Effects of Thresholding Techniques on μCT-Based Finite Element Models of Trabecular Bone
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
481
486
.
22.
Hughes
,
C. M.
,
Bordush
,
A.
,
Robioneck
,
B.
,
Procter
,
P.
, and
Brown
,
C. J.
,
2014
, “
Bone Anchors—A Preliminary Finite Element Study of Some Factors Affecting Pullout
,”
ASME J. Med. Devices
,
8
(
4
), p.
041006
.
23.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.
24.
Rincon Kohli
,
L.
,
2003
, “
Identification of a Multiaxial Failure Criterion for Human Trabecular Bone
,”
Ph.D. thesis
, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
25.
Wang
,
Y.
,
Mori
,
R.
,
Ozoe
,
N.
,
Nakai
,
T.
, and
Uchio
,
Y.
,
2009
, “
Proximal Half Angle of the Screw Thread is a Critical Design Variable Affecting the Pull-Out Strength of Cancellous Bone Screws
,”
Clin. Biomech.
,
24
(
9
), pp.
781
785
.
26.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
,
2001
, “
Biomechanics of Trabecular Bone
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
307
333
.
27.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University
,
Cambridge, UK
.
You do not currently have access to this content.