An estimated 2% of the population in the U.S. suffers with chronic nonhealing wounds, whose treatment cost is estimated at $50 billion every year. These wounds are further complicated by bacterial infections that are resistant to treatment. Bacteria such as methicillin-resistant Staphylococcus aureus (SA) and multidrug-resistant Pseudomonas aeruginosa (PA) infections form a structure similar to biofilms, which is resistant to conventional antibiotics. Current medical therapies lack the ability to successfully heal the wounds in a predictable amount of time.

Wound healing usually consists of four major stages. Hemostasis followed by inflammation, proliferation, and remodeling. Bacterial infections prevent wounds from healing beyond the inflammation stage and result in delayed healing times. Inactivation of bacteria is a key issue for wound healing and can result in faster wound healing times.

Cold atmospheric pressure plasmas are a rich source of reactive oxygen and nitrogen species (RONS) that can...

References

References
1.
Isbary
,
G.
,
Morfill
,
H. U.
,
Schmidt
,
M.
,
Georgi
,
K.
,
Ramrath
,
J.
,
Heinlin
,
S.
,
Karrer
,
S.
,
Landthaler
,
M.
,
Shimizu
,
T.
,
Steffes
,
B.
,
Bunk
,
W.
,
Monetti
,
R.
,
Zimmermann
,
J. L.
,
Pompl
,
R.
, and
Stolz
,
W.
,
2010
, “
A First Prospective Randomized Controlled Trial to Decrease Bacterial Load Using Cold Atmospheric Argon Plasma on Chronic Wounds in Patients
,”
Br. J. Dermatol.
,
163
(
1
), pp.
78
82
.
2.
Ermolaeva
,
S. A.
,
Varfolomeev
,
A. F.
,
Chernukha
,
M. Y.
,
Yurov
,
D. S.
,
Vasiliev
,
M. M.
,
Kaminskaya
,
A. A.
,
Moisenovich
,
M. M.
,
Romanova
,
J. M.
,
Murashev
,
A. N.
,
Selezneva
,
I. I.
,
Shimizu
,
T.
,
Sysolyatina
,
E. V.
,
Shaginyan
,
I. A.
,
Petrov
,
O. F.
,
Mayevsky
,
E. I.
,
Fortov
,
V. E.
,
Morfill
,
G. E.
,
Naroditsky
,
B. S.
, and
Gintsburg
,
A. L.
,
2011
, “
Bactericidal Effects of Non-Thermal Argon Plasma In Vitro, in Biofilms and in the Animal Model of Infected Wounds
,”
J. Med. Microbiol.
,
60
(
Pt. 1
), pp.
75
83
.
3.
Lukes
,
P.
,
Dolezalova
,
E.
,
Sisrova
,
I.
, and
Clupek
,
M.
,
2014
, “
Aqueous-Phase Chemistry and Bactericidal Effects From an Air Discharge Plasma in Contact With Water: Evidence or the Formation of Peroxynitrite Through a Pseudo-Second-Order Post-Discharge Reaction of H2O2 and HNO2
,”
Plasma Sources Sci. Technol.
,
23
(
1
), p.
015019
.
4.
van Gils
,
C. A. J.
,
Hofmann
,
S.
,
Boekema
,
B. K. H. L.
,
Brandenburg
,
R.
, and
Bruggeman
,
P. J.
,
2013
, “
Mechanisms of Bacterial Inactivation in the Liquid Phase Induced by a Remote RF Cold Atmospheric Pressure Plasma Jet
,”
J. Phys. D: Appl. Phys.
,
46
(
17
), p.
175203
.
5.
van Ham
,
B. T. J.
,
Hofmann
,
S.
,
Brandenburg
,
R.
, and
Bruggeman
,
P. J.
,
2014
, “
In Situ Absolute Air, O3 and NO Densities in the Effluent of a Cold RF Argon Atmospheric Pressure Plasma Jet Obtained by Molecular Beam Mass Spectrometry
,”
J. Phys D: Appl. Phys.
,
47
(
22
), p.
224013
.
6.
van Gessel
,
A. F. H.
,
Alards
,
K. M. J.
, and
Bruggeman
,
P. J.
,
2013
, “
NO Production in an RF Plasma Jet at Atmospheric Pressure
,”
J. Phys. D: Appl. Phys.
,
46
(
26
), p.
265202
.
7.
Wende
,
K.
,
Williams
,
P.
,
Dalluge
,
J.
,
Gaens
,
W. V.
,
Aboubakr
,
H.
,
Bischof
,
J.
,
von Woedtke
,
T.
,
Goyal
,
S. M.
,
Weltmann
,
K. D.
,
Bogaerts
,
A.
,
Masur
,
K.
, and
Bruggeman
,
P. J.
,
2015
, “
Identification of the Biologically Active Liquid Chemistry Induced by a Nonthermal Atmospheric Pressure Plasma Jet
,”
Biointerphases
,
10
(
2
), p.
029518
.
You do not currently have access to this content.