Ex vivo high-resolution measurement of highly crosslinked (HXL) polyethylene hip liner wear is necessary to characterize the in vivo performance of these polymers that exhibit increased wear resistance. Current studies focus on using a coordinate measuring machine (CMM) to acquire data representing the bearing surface(s) of HXL hip liners and use this data to determine linear and volumetric wear. However, these current techniques are subject to error in both data acquisition and data analysis. The purpose of this study was to identify these sources of error and present a novel method for HXL wear measurement that minimizes these contributions to error: our novel methods use a CMM to measure both the articular and backside surfaces of HXL hip liners for subsequent data analysis in Geomagic Control and matlab. Our method involves a vertical orientation of the hip liner to enable one CMM scan of both sides of the hip liner. This method minimizes identified sources of error and proves to be an effective approach for data acquisition of HXL hip liner wear. We also find that our data analysis technique of calculating changes in wall thicknesses is effective in accounting for errors associated with data analysis. Validation of this technique occurred via measurement of two never-implanted HXL hip liners of different sizes (28 mm and 32 mm). In comparing the 32 mm hip liner to its corresponding computer-aided design (CAD) model, we found that our data acquisition technique led to a 0.0019 mm discrepancy between the scanned liner and its CAD model in measured thickness at the pole. We calculated 0.0588 mm and 0.0800 of linear wear for the 28 mm and 32 mm hip liners, respectively, based on our data analysis algorithm. We hypothesize that these reported linear wear values of the never-implanted hip liners are due to machining tolerances of the hip liners themselves.

References

References
1.
Martell
,
J.
, and
Berdia
,
S.
,
1997
, “
Determination of Polyethylene Wear in Total Hip Replacements With Use of Digital Radiographs
,”
J. Bone Jt. Surg. Am.
,
79
(
11
), pp.
1635
1641
.
2.
Bragdon
,
C. R.
,
Kwon
,
Y. M.
,
Geller
,
J. A.
,
Greene
,
M. E.
,
Freiberg
,
A. A.
,
Harris
,
W. H.
, and
Malchau
,
H.
,
2007
, “
Minimum 6-Year Followup of Highly Cross-Linked Polyethylene in THA
,”
Clin. Orthop. Relat. Res.
,
465
, pp.
122
127
.
3.
Engh
,
C. A.
, Jr.
,
Stepniewski
,
A. S.
,
Ginn
,
S. D.
,
Beykirch
,
S. E.
,
Sychterz-Terefenko
,
C. J.
,
Hopper
,
R. H.
, Jr.
, and
Engh
,
C. A.
,
2006
, “
A Randomized Prospective Evaluation of Outcomes After Total Hip Arthroplasty Using Cross-Linked Marathon and Non-Cross-Linked Enduron Polyethylene Liners
,”
J. Arthroplasty
,
21
(
6
), pp.
17
25
.
4.
Ranawat
,
A. S.
,
Tsailis
,
P.
,
Meftah
,
M.
,
Koob
,
T. W.
,
Rodriguez
,
J. A.
, and
Ranawat
,
C. S.
,
2012
, “
Minimum 5-Year Wear Analysis of First-Generation Highly Cross-Linked Polyethylene in Patients 65 Years and Younger
,”
J. Arthroplasty
,
27
(
3
), pp.
354
357
.
5.
Martell
,
J. M.
,
Berkson
,
E.
,
Berger
,
R.
, and
Jacobs
,
J.
,
2003
, “
Comparison of Two and Three-Dimensional Computerized Polyethylene Wear Analysis After Total Hip Arthroplasty
,”
J. Bone Jt. Surg. Am.
,
85
(
6
), pp.
1111
1117
.
6.
Martell
,
J. M.
,
Verner
,
J. J.
, and
Incavo
,
S. J.
,
2003
, “
Clinical Performance of a Highly Cross-Linked Polyethylene at Two Years in Total Hip Arthroplasty: A Randomized Prospective Trial
,”
J. Arthroplasty
,
18
(
7
), pp.
55
59
.
7.
Bragdon
,
C. R.
,
Martell
,
J. M.
,
Estok
,
D. M.
, II
,
Greene
,
M. E.
,
Malchau
,
H.
, and
Harris
,
W. H.
,
2005
, “
A New Approach for the Martell 3-D Method of Measuring Polyethylene Wear Without Requiring the Cross-Table Lateral Films
,”
J. Orthop. Res.
,
23
(
4
), pp.
720
725
.
8.
Heisel
,
C.
,
Silva
,
M.
,
dela Rosa
,
M. A.
, and
Schmalzried
,
T. P.
,
2004
, “
In Vivo Wear of Marathon Crosslinked Polyethylene
,”
J. Bone Jt. Surg. Am.
,
86
(
4
), pp.
748
751
.
9.
Sychterz
,
C. J.
,
Young
,
A. M.
, and
Engh
,
C. A.
,
2001
, “
Effect of Radiographic Quality on Computer-Assisted Head Penetration Measurements
,”
Clin. Orthop. Relat. Res.
,
386
, pp.
150
158
.
10.
Bills
,
P.
,
Blunt
,
L.
, and
Jiang
,
X.
,
2007
, “
Development of a Technique for Accurately Determining Clinical Wear in Explanted Total Hip Replacements
,”
Wear
,
263
, pp.
1133
1137
.
11.
Geringer
,
J.
,
Boyer
,
B.
, and
Farizon
,
F.
,
2011
, “
Understanding the Dual Mobility Concept for Total Hip Arthroplasty. Investigations on a Multiscale Analysis-Highlighting the Role of Arthrofibrosis
,”
Wear
,
271
, pp.
2379
2385
.
12.
Calvert
,
G. T.
,
Devane
,
P. A.
,
Fielden
,
J.
,
Adams
,
K.
, and
Horne
,
J. G.
,
2009
, “
A Double-Blind, Prospective, Randomized Controlled Trial Comparing Highly Cross-Linked and Conventional Polyethylene in Primary Total Hip Arthroplasty
,”
J. Arthroplasty
,
24
(
4
), pp.
505
510
.
13.
Meftah
,
M.
,
Klingenstein
,
G. G.
,
Yun
,
R. J.
,
Ranawat
,
A. S.
, and
Ranawat
,
C. S.
,
2013
, “
Long-Term Performance of Ceramic and Metal Femoral Heads on Conventional Polyethylene in Young and Active Patients
,”
J. Bone Jt. Surg. Am.
,
95
(
13
), pp.
1193
1197
.
14.
McCalden
,
R. W.
,
MacDonald
,
S. J.
,
Rorabeck
,
C. H.
,
Bourne
,
R. B.
,
Chess
,
D. G.
, and
Charron
,
K. D.
,
2009
, “
Wear Rate of Highly Cross-Linked Polyethylene in Total Hip Arthroplasty: A Randomized Controlled Trial
,”
J. Bone Jt. Surg. Am.
,
91
(
4
), pp.
773
782
.
15.
Dorr
,
L. D.
,
Wan
,
Z.
,
Shahrdar
,
C.
,
Sirianni
,
L.
,
Boutary
,
M.
, and
Yun
,
A.
,
2005
, “
Clinical Performance of a Durasul Highly Cross-Linked Polyethylene Acetabular Liner for Total Hip Arthroplasty at Five Years
,”
J. Bone Jt. Surg. Am.
,
87
(
8
), pp.
1816
1821
.
16.
McKellop
,
H.
,
Shen
,
F.-W.
,
Lu
,
B.
,
Campbell
,
P.
, and
Salovey
,
R.
,
2000
, “
Effect of Sterilization and Other Modifications on the Wear Resistance of Acetabular Cups Made of Ultra-High Molecular Weight Polyethylene
,”
J. Bone Jt. Surg. Am.
,
82
(
12
), pp.
1708
1725
.
17.
Digas
,
G.
,
Karrholm
,
J.
,
Thanner
,
J.
,
Malchau
,
H.
, and
Herberts
,
P.
,
2003
, “
Highly Cross-Linked Polyethylene in Cemented THA: Randomized Study of 61 Hips
,”
Clin. Orthop. Relat. Res.
,
417
, pp.
126
138
.
18.
Digas
,
G.
,
Karrholm
,
J.
,
Thanner
,
J.
,
Malchau
,
H.
, and
Herberts
,
P.
,
2004
, “
Highly Cross-linked Polyethylene in Total Hip Arthroplasty: Randomized Evaluation of Penetration Rate in Cemented and Uncemented Sockets Using Radiostereometric Analysis
,”
Clin. Orthop. Relat. Res.
,
429
, pp.
6
16
.
19.
Goldvasser
,
D.
,
Hansen
,
V. J.
,
Noz
,
M. E.
,
Maguire
,
G. Q.
, Jr.
,
Zeleznik
,
M. P.
,
Olivecrona
,
H.
,
Bragdon
,
C. R.
,
Weidenhielm
,
L.
, and
Malchau
,
H.
,
2014
, “
In Vivo and Ex Vivo Measurement of Polyethylene Wear in Total Hip Arthroplasty: Comparison of Measurements Using a CT Algorithm, a Coordinate-Measuring Machine, and a Micrometer
,”
Acta Orthop.
,
85
(
3
), pp.
1
5
.
20.
Thomas
,
G. E.
,
Simpson
,
D. J.
,
Mehmood
,
S.
,
Taylor
,
A.
,
McLardy-Smith
,
P.
,
Gill
,
H. S.
,
Murray
,
D. W.
, and
Glyn-Jones
,
S.
,
2011
, “
The Seven-Year Wear of Highly Cross-Linked Polyethylene in Total Hip Arthroplasty: A Double-Blind, Randomized Controlled Trial Using Radiostereometric Analysis
,”
J. Bone Jt. Surg. Am.
,
93
(
8
), pp.
716
722
.
21.
Vandenbussche
,
E.
,
Saffarini
,
M.
,
Hansen
,
U.
,
Taillieu
,
F.
,
Mutschler
,
C.
,
Augereau
,
B.
, and
Gregory
,
T.
,
2010
, “
Measurement of Femoral Head Penetration in Polyethylene Using a 3-Dimensional CT-Scan Technique
,”
Acta Orthop.
,
81
(
5
), pp.
563
569
.
22.
Carmignato
,
S.
,
Spinelli
,
M.
,
Affatato
,
S.
, and
Savio
,
E.
,
2011
, “
Uncertainty Evaluation of Volumetric Wear Assessment From Coordinate Measurements of Ceramic Hip Joint Prostheses
,”
Wear
,
270
, pp.
584
590
.
You do not currently have access to this content.