Magnetic compression based anastomoses use magnetic force to necrose tissue between two magnets to create an anastomosis. Nickel-plated neodymium–iron–boron magnets are used in our study. The compression pressure between the magnets depends on the distance between the magnets, which is determined by the thickness of the compressed tissue and depends on bowel wall thickness and elasticity. It is critical to know the distance between the magnets once the tissue is compressed because the magnets must be within a critical distance of each other in order to create enough compressive force to necrose the tissue. We have developed an inductance sensor to detect the distance (tissue thickness) between the two magnets after the surgeon has deployed them. Inductance sensing is a contact-less sensing method that enables precise short-range detection of conducting surfaces. The inductor coil mounted on one magnet detects the second magnet by measuring the change in inductance due to eddy current induced on the nickel-plated surface of the second magnet. The change in the inductance is proportional to the change in distance between the magnets. The sensor was first calibrated by using polycarbonate sheets to simulate the intestine tissue. We are able to detect up to 6 mm of spacing between the magnets. Pig intestine from Yorkshire pigs was used to characterize the sensor. We are able to distinguish up to five distinct layers of the intestine from the large intestine. This sensing mechanism can indicate the operating surgeon the exact thickness of the tissue compressed between the two magnets. The surgeon can thus be sure of formation of a clean anastomosis and avoid the likelihood of the magnets sliding away or uncoupling.

References

References
1.
Linn
,
B. S.
,
Reisman
,
T. M.
,
Yurt
,
R. W.
, and
Polk
,
H. C.
, Jr.
,
1968
, “
Intestinal Anastomosis by Invagination: A Historical Review of a ‘New’ Technic With Controlled Study of Its Potential
,”
Ann. Surg.
,
167
(
3
), pp.
393
398
.
2.
Hyman
,
N.
,
Manchester
,
T. L.
,
Osler
,
T.
,
Burns
,
B.
, and
Cataldo
,
P. A.
,
2007
, “
Anastomotic Leaks After Intestinal Anastomosis It's Later Than You Think
,”
Ann. Surg.
,
245
(
2
), pp.
254
258
.
3.
Zaritzky
,
M.
,
Ben
,
R.
, and
Johnston
,
K.
,
2014
, “
Magnetic Gastrointestinal Anastomosis in Pediatric Patients
,”
J. Pediatr. Surg.
,
49
(
7
), pp.
1131
1137
.
4.
Jamshidi
,
R.
,
Stephenson
,
J. T.
,
Clay
,
J. G.
,
Pichakron
,
K. O.
, and
Harrison
,
M. R.
,
2009
, “
Magnamosis: Magnetic Compression Anastomosis With Comparison to Suture and Staple Techniques
,”
J. Pediatr. Surg.
,
44
(
1
), pp.
222
228
.
5.
Pichakron
,
K. O.
,
Jelin
,
E. B.
,
Hirose
,
S.
,
Curran
,
P. F.
,
Jamshidi
,
R.
,
Stephenson
,
J. T.
,
Fechter
,
R.
,
Strange
,
M.
, and
Harrison
,
M. R.
,
2011
, “
Magnamosis II: Magnetic Compression Anastomosis for Minimally Invasive Gastrojejunostomy and Jejunojejunostomy
,”
Am. Coll. Surg.
,
212
(
1
), pp.
42
49
.
6.
Gonzales
,
K. D.
,
Douglas
,
G.
,
Pichakron
,
K. O.
,
Kwiat
,
D. A.
,
Gallardo
,
S. G.
,
Encinas
,
J. L.
,
Hirose
,
S.
, and
Harrison
,
M. R.
,
2012
, “
Magnamosis III: Delivery of a Magnetic Compression Anastomosis Device Using Minimally Invasive Endoscopic Techniques
,”
J. Pediatr. Surg.
,
47
(
6
), pp.
1291
1295
.
7.
Wall
,
J.
,
Diana
,
M.
,
Leroy
,
J.
,
DeRuijter
,
V.
,
Gonzales
,
K. D.
,
Lindner
,
V.
,
Harrison
,
M.
, and
Marescaux
,
J.
,
2013
, “
MAGNAMOSIS IV: Magnetic Compression Anastomosis for Minimally Invasive Colorectal Surgery
,”
Endoscopy
,
45
(8), pp.
1
6
.
8.
Diana
,
M.
,
Wall
,
J.
,
Perretta
,
S.
,
Dallemagne
,
B.
,
Gonzales
,
K. D.
,
Harrison
,
M. R.
,
Agnus
,
V.
,
Soler
,
L.
,
Nicolau
,
S.
, and
Marescaux
,
J.
,
2011
, “
Totally Endoscopic Magnetic Enteral Bypass by External Guided Rendez-Vous Technique
,”
Surg. Innovation
,
18
(
4
), pp.
317
320
.
9.
Leroy
,
J.
,
Perretta
,
S.
,
Diana
,
M.
,
Wall
,
J.
,
Lindner
,
V.
,
Harrison
,
M.
, and
Marescaux
,
J.
,
2012
, “
An Original Endoluminal Magnetic Anastomotic Device Allowing Pure NOTES Transgastric and Transrectal Sigmoidectomy in a Porcine Model: Proof of Concept
,”
Surg. Innovation
,
19
(
2
), pp.
109
116
.
10.
Lovvorn
,
H. N.
, III
,
Baron
,
C. M.
,
Danko
,
M. E.
,
Novotny
,
N. M.
,
Bucher
,
B. T.
,
Johnston
,
K. K.
, and
Zaritzky
,
M. F.
,
2014
, “
Staged Repair of Esophageal Atresia: Pouch Approximation and Catheter-Based Magnetic Anastomosis
,”
J. Pediatr. Surg. Case Rep.
,
2
(
4
), pp.
170
175
.
11.
Ho
,
Y.-H.
, and
Ashour
,
M. A. T.
,
2010
, “
Techniques for Colorectal Anastomosis
,”
World J. Gastroenterol.
,
16
(
13
), pp.
1610
1621
.
12.
Lambe
,
T.
,
Ríordáin
,
M. G.
,
Cahill
,
R. A.
, and
Cantillon-Murphy
,
P.
,
2014
, “
Magnetic Compression in Gastrointestinal and Bilioenteric Anastomosis: How Much Force?
Surg. Innovation
,
21
(
1
), pp.
65
73
.
13.
Cummings
,
B.
,
1991
, “
Applying Proximity Sensors
,”
I&Cs-Control Technol. Eng. Eng. Manage.
,
64
(
9
), pp.
45
47
.
14.
Milanovich
,
F. P.
,
Hirschfeld
,
T. B.
,
Wang
,
F. T.
,
Klainer
,
S. M.
, and
Walt
,
D.
,
1984
, “
Clinical Measurements Using Fiber Optics and Optrodes
,”
Proc. SPIE
,
494
, pp.
18
24
.
15.
Peterson
,
J.
, and
Vurek
,
G.
,
1984
, “
Fiber-Optic Sensors for Biomedical Applications
,”
Science
,
224
(
4645
), pp.
123
127
.
16.
Roriz
,
P.
,
Frazão
,
O.
,
Lobo-Ribeiro
,
A. B.
,
Santos
,
J. L.
, and
Simões
,
J. A.
,
2013
, “
Review of Fiber-Optic Pressure Sensors for Biomedical and Biomechanical Applications
,”
J. Biomed. Opt.
,
18
(
5
), p.
050903
.
17.
Petersen
,
K.
,
1996
, “
Biomedical Applications of MEMS
,” International Electron Devices Meeting (
IDEM '96
), San Francisco, CA, Dec. 8–11, pp.
239
242
.
18.
Wahab
,
Y.
,
Zayegh
,
A.
, and
Begg
,
R.
,
2010
, “
Silicon Implementation of Micro Pressure Sensor
,”
International Conference on Electronic Devices, Systems and Applications
(
ICEDSA
), Kuala Lumpur, Apr. 12–13, pp.
232
235
.
19.
Popovic
,
R. S.
,
1989
, “
Hall Effect Device
,”
Sens. Actuators
,
17
(
3
), pp.
39
53
.
20.
Wang
,
Y.
,
Li
,
J.
, and
Viehland
,
D.
,
2014
, “
Magnetoelectrics for Magnetic Sensor Applications: Status, Challenges and Perspectives
,”
Mater. Today
,
17
(
6
), pp.
269
275
.
21.
Texas Instruments
, “
5 V, High Resolution, Inductance to Digital Converter for Inductive Sensing Applications
,” Texas Instruments Inc., Dallas, TX, http://www.ti.com/product/ldc1000
22.
Zhao
,
J.
,
2010
, “
A New Calculation for Designing Multilayer Planar Spiral Inductors
,”
EDN
,
July
, pp.
37
40
.
23.
Glaser
,
R.
,
2013
,
Biophysics
,
Springer
,
New York
.
24.
Tanimoto
,
Y.
,
Fujiwara
,
M.
,
Sueda
,
M.
,
Inoue
,
K.
, and
Akita
,
M.
,
2005
, “
Magnetic Levitation of Plastic Chips: Applications for Magnetic Susceptibility Measurement and Magnetic Separation
,”
Jpn. J. Appl. Phys., Part 1
,
44
(
9A
), pp.
6801
6803
.
25.
Macari
,
M.
, and
Balthazar
,
E. J.
,
2001
, “
CT of Bowel Wall Thickening: Significance and Pitfalls of Interpretation
,”
Am. J. Roentgenol.
,
176
(
5
), pp.
1105
1116
.
26.
Haber
,
H. P.
,
Benda
,
N.
,
Fitzke
,
G.
,
Lang
,
A.
,
Langenberg
,
M.
,
Riethmueller
,
J.
, and
Stern
,
M.
,
1997
, “
Colonic Wall Thickness Measured by Ultrasound: Striking Difference in Patients With Cystic Fibrosis Versus Healthy Control
,”
Gut
,
40
(
3
), pp.
406
411
.
You do not currently have access to this content.