The accuracy of many freehand medical procedures can be improved with assistance from real-time localization. Magnetic localization systems based on harnessing passive permanent magnets (PMs) are of great interest to track objects inside the body because they do not require a powered source and provide noncontact sensing without the need for line-of-sight. While the effect of the number of sensors on the localization accuracy in such systems has been reported, the spatial design of the sensing assembly is an open problem. This paper presents a systematic approach to determine an optimal spatial sensor configuration for localizing a PM during a medical procedure. Two alternative approaches were explored and compared through numerical simulations and experimental investigation: one based on traditional grid configuration and the other derived using genetic algorithms (GAs). Our results strongly suggest that optimizing the spatial arrangement has a larger influence on localization performance than increasing the number of sensors in the assembly. We found that among all the optimization schemes, the approach utilizing GA produced sensor designs with the smallest localization errors.

References

References
1.
Sekula
,
R.
,
Cohen
,
D.
,
Patek
,
P.
,
Jannetta
,
P.
, and
Oh
,
M.
,
2008
, “
Epidemiology of Ventriculostomy in the United States From 1997 to 2001
,”
Br. J. Neurosurg.
,
22
(
2
), pp.
213
221
.
2.
Maréchal
,
L.
,
Foong
,
S.
,
Ding
,
S.
,
Madhavan
,
D.
,
Wood
,
K. L.
,
Gupta
,
R.
,
Patil
,
V.
, and
Walsh
,
C. J.
,
2014
, “
Optimal Spatial Design of Non-Invasive Magnetic Field-Based Localization Systems
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
3510
3516
.
3.
Huyette
,
D. R.
,
Turnbow
,
B. J.
,
Kaufman
,
C.
,
Vaslow
,
D. F.
,
Whiting
,
B. B.
, and
Oh
,
M. Y.
,
2008
, “
Accuracy of the Freehand Pass Technique for Ventriculostomy Catheter Placement: Retrospective Assessment Using Computed Tomography Scans
,”
J. Neurosurg.
,
108
(
1
), pp.
88
91
.
4.
Hsieh
,
C.-T.
,
Chen
,
G.-J.
,
Ma
,
H.-I.
,
Chang
,
C.-F.
,
Cheng
,
C.-M.
,
Su
,
Y.-H.
,
Ju
,
D.-T.
,
Hsia
,
C.-C.
,
Chen
,
Y.-H.
,
Wu
,
H.-Y.
, and
Liu
,
M.-Y.
,
2011
, “
The Misplacement of External Ventricular Drain by Freehand Method in Emergent Neurosurgery
,”
Acta Neurol. Belg.
,
111
(
1
), pp.
22
28
.
5.
Schuind
,
S.
,
Minichini
,
V.
,
Abeloos
,
L.
,
Rynchowski
,
M.
,
Pouleau
,
H. B.
,
Drogba
,
L.
,
Masudi
,
J.
,
Appelboom
,
G.
,
Kus
,
G.
,
Lubansu
,
A.
,
Massager
,
N.
,
Lefranc
,
F.
,
De Witte
,
O.
, and
Bruneau
,
M.
,
2013
, “
Accuracy and Complications of Free-Hand External Ventricular Drain Placement: Preliminary Results of a Prospective Observational Study
,”
World Neurosurg.
,
80
(
5
), pp.
664
665
.
6.
Patil
,
V.
,
Lacson
,
R.
,
Vosburgh
,
K.
,
Wong
,
J.
,
Prevedello
,
L.
,
Andriole
,
K.
,
Mukundan
,
S.
,
Popp
,
A.
, and
Khorasani
,
R.
,
2013
, “
Factors Associated With External Ventricular Drain Placement Accuracy: Data From an Electronic Health Record Repository
,”
Acta Neurochir.
,
155
(
9
), pp.
1773
1779
.
7.
O'Neill
,
B. R.
,
Velez
,
D. A.
,
Braxton
,
E. E.
,
Whiting
,
D.
, and
Oh
,
M. Y.
,
2008
, “
A Survey of Ventriculostomy and Intracranial Pressure Monitor Placement Practices
,”
Surg. Neurol.
,
70
(
3
), pp.
268
273
.
8.
Anderson
,
R. C. E.
,
Kan
,
P.
,
Klimo
,
P.
,
Brockmeyer
,
D. L.
,
Walker
,
M. L.
, and
Kestle
,
J. R. W.
,
2004
, “
Complications of Intracranial Pressure Monitoring in Children With Head Trauma
,”
J. Neurosurg.
,
101
(
1 Suppl.
), pp.
53
58
.
9.
Gardner
,
P. A.
,
Engh
,
J.
,
Atteberry
,
D.
, and
Moossy
,
J. J.
,
2009
, “
Hemorrhage Rates After External Ventricular Drain Placement
,”
J. Neurosurg.
,
110
(
5
), pp.
1021
1025
.
10.
Kitchen
,
W. J.
,
Singh
,
N.
,
Hulme
,
S.
,
Galea
,
J.
,
Patel
,
H. C.
, and
King
,
A. T.
,
2011
, “
External Ventricular Drain Infection: Improved Technique Can Reduce Infection Rates
,”
Br. J. Neurosurg.
,
25
(
5
), pp.
632
635
.
11.
Krötz
,
M.
,
Linsenmaier
,
U.
,
Kanz
,
K. G.
,
Pfeifer
,
K. J.
,
Mutschler
,
W.
, and
Reiser
,
M.
,
2004
, “
Evaluation of Minimally Invasive Percutaneous CT-Controlled Ventriculostomy in Patients With Severe Head Trauma
,”
Eur. Radiol.
,
14
(
2
), pp.
227
233
.
12.
Lollis
,
S. S.
, and
Roberts
,
D. W.
,
2008
, “
Robotic Catheter Ventriculostomy: Feasibility, Efficacy, and Implications
,”
J. Neurosurg.
,
108
(
2
), pp.
269
274
.
13.
Mahan
,
M.
,
Spetzler
,
R. F.
, and
Nakaji
,
P.
,
2013
, “
Electromagnetic Stereotactic Navigation for External Ventricular Drain Placement in the Intensive Care Unit
,”
J. Clin. Neurosci.: Off. J. Neurosurg. Soc. Australas.
,
20
(
12
), pp.
1718
1722
.
14.
Hu
,
C.
,
Meng
,
M.-H.
,
Mandal
,
M.
, and
Wang
,
X.
,
2006
, “
3-Axis Magnetic Sensor Array System for Tracking Magnet's Position and Orientation
,”
Sixth World Congress on Intelligent Control and Automation
(
WCICA 2006
), Dalian, China, June 21–23, pp.
5304
5308
.
15.
Hu
,
C.
,
Yang
,
W.
,
Chen
,
D.
,
Meng
,
M. Q. H.
, and
Dai
,
H.
,
2008
, “
An Improved Magnetic Localization and Orientation Algorithm for Wireless Capsule Endoscope
,”
30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC 2008
), Vancouver, BC, Canada, Aug. 20–25, pp.
2055
2058
.
16.
Hu
,
C.
,
Li
,
M.
,
Song
,
S.
,
Yang
,
W.
,
Zhang
,
R.
, and
Meng
,
M. Q. H.
,
2010
, “
A Cubic 3-Axis Magnetic Sensor Array for Wirelessly Tracking Magnet Position and Orientation
,”
IEEE Sens. J.
,
10
(
5
), pp.
903
913
.
17.
Schlageter
,
V.
,
Besse
,
P.-A.
,
Popovic
,
R. S.
, and
Kucera
,
P.
,
2001
, “
Tracking System With Five Degrees of Freedom Using a 2D-Array of Hall Sensors and a Permanent Magnet
,”
Sens. Actuators, A
,
92
(
1–3
), pp.
37
42
.
18.
Schlageter
,
V.
,
Drljaca
,
P.
,
Popovic
,
R. S.
, and
Kucera
,
P.
,
2002
, “
A Magnetic Tracking System Based on Highly Sensitive Integrated Hall Sensors
,”
JSME Int. J. Ser. C
,
45
(
4
), pp.
967
973
.
19.
Song
,
S.
,
Hu
,
C.
,
Li
,
M.
,
Yang
,
W.
, and
Meng
,
M. Q.-H.
,
2009
, “
Real Time Algorithm for Magnet's Localization in Capsule Endoscope
,”
IEEE International Conference on Automation and Logistics
(
ICAL '09
), Shenyang, China, Aug. 5–7, pp.
2030
2035
.
20.
Hu
,
C.
,
Meng
,
M. Q.
, and
Mandal
,
M.
,
2005
, “
Efficient Magnetic Localization and Orientation Technique for Capsule Endoscopy
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2005
), Edmonton, Canada, Aug. 2–6, pp.
628
633
.
21.
Foong
,
S.
,
Lee
,
K.-M.
, and
Bai
,
K.
,
2012
, “
Harnessing Embedded Magnetic Fields for Angular Sensing With Nanodegree Accuracy
,”
IEEE/ASME Trans. Mechatron.
,
17
(
4
), pp.
687
696
.
22.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
23.
Ehtisham
,
A.
,
Taylor
,
S.
,
Bayless
,
L.
,
Klein
,
M. W.
, and
Janzen
,
J. M.
,
2009
, “
Placement of External Ventricular Drains and Intracranial Pressure Monitors by Neurointensivists
,”
Neurocrit. Care
,
10
(
2
), pp.
241
247
.
24.
Banerjee
,
P. P.
,
Luciano
,
C. J.
,
Lemole
,
G. M.
,
Charbel
,
F. T.
, and
Oh
,
M. Y.
,
2007
, “
Accuracy of Ventriculostomy Catheter Placement Using a Head- and Hand-Tracked High-Resolution Virtual Reality Simulator With Haptic Feedback
,”
J. Neurosurg.
,
107
(
3
), pp.
515
521
.
25.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.
26.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Cody Hazlett
,
H.
,
Gimpel Smith
,
R.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
Neuroimage
,
31
(
3
), pp.
1116
1128
.
27.
Weitschies
,
W.
,
Wedemeyer
,
J.
,
Stehr
,
R.
, and
Trahms
,
L.
,
1994
, “
Magnetic Markers as a Noninvasive Tool to Monitor Gastrointestinal Transit
,”
IEEE Trans. Biomed. Eng.
,
41
(
2
), pp.
192
195
.
28.
Li
,
M.
,
Song
,
S.
,
Hu
,
C.
,
Chen
,
D.
, and
Meng
,
M.-H.
,
2010
, “
A Novel Method of 6-DoF Electromagnetic Navigation System for Surgical Robot
,”
8th World Congress on Intelligent Control and Automation
(
WCICA
), Jinan, China, July 7–9, pp.
2163
2167
.
29.
Furlani
,
E. P.
,
2001
,
Permanent Magnet and Electromechanical Devices
,
Academic
,
San Diego, CA
.
30.
Wu
,
F.
,
Robert
,
N. M.
,
Frey
,
D. D.
, and
Foong
,
S.
,
2013
, “
Enhanced Magnetic Localization With Artificial Neural Network Field Models
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
1560
1565
.
31.
Srinivasa
,
Y. M.
,
Foong
,
S.
,
Madhavan
,
D.
,
Tan
,
U.-X.
,
Hu
,
L.
,
Fu
,
X.
, and
Lo
,
Y. L.
,
2013
, “
Non-Contact Parametric Estimation and Localization of Human Head for Transcranial Magnetic Stimulation (TMS)
,”
6th IEEE Conference on Robotics, Automation and Mechatronics
(
RAM
), Manila, Philippines, Nov. 12–15, pp.
241
246
.
32.
Marquez
,
J.
,
Ramirez
,
W.
,
Boyer
,
L.
, and
Delmas
,
P.
,
2008
, “
Robust Ellipsoidal Model Fitting of Human Heads
,”
Second International Conference on Robot Vision
(
RobVis
), Auckland, New Zealand, Feb. 18–20,
Springer-Verlag,
Berlin
, pp.
381
390
.
You do not currently have access to this content.