There is an increasing need to incorporate an actively controlled drug delivery system (DDS) into the next generation of capsule endoscopy in order to treat diseases in the gastrointestinal tract in a noninvasive way. Despite a number of attempts to magnetically actuate drug delivery mechanisms embedded in endoscopic capsules, longer operating distances and further miniaturization of on-board components are still drawbacks of such systems. In this paper, we propose an innovative magnetic system that consists of an array of magnets, which activates a DDS, based on an overly miniaturized slider–crank mechanism. We use analytical models to compare the magnetic fields generated by cylindrical and arc-shaped magnets. Our experimental results, which are in agreement with the analytical results, show that an optimally configured array of the magnets enhances the magnetic field and also the driving magnetic torque and subsequently, it imposes a high enough force on the piston of the DDS to expel a required dose of a drug out of a reservoir. We conclude that the proposed magnetic field optimization method is effective in establishing an active DDS that is designed to deliver drug profiles with accurate control of the release rate, release amount, and number of doses.

References

References
1.
Munoz
,
F.
,
Alici
,
G.
, and
Li
,
W.
,
2014
, “
A Review of Drug Delivery Systems for Capsule Endoscopy
,”
Adv. Drug Delivery Rev.
,
71
, pp.
77
85
.
2.
van der Schaar
,
P. J.
,
Dijksman
,
J. F.
,
Broekhuizen de Gast
,
H.
,
Shimizu
,
J.
,
van Lelyveld
,
N.
,
Zou
,
H.
,
Lordanov
,
V.
,
Wanke
,
C.
, and
Siersema
,
P. D.
,
2013
, “
A Novel Ingestible Electronic Drug Delivery and Monitoring Device
,”
Gastrointest. Endoscopy J.
,
78
(
3
), pp.
520
528
.
3.
Yim
,
S.
, and
Sitti
,
M.
,
2012
, “
Design and Rolling Locomotion of a Magnetically Actuated Soft Capsule Endoscope
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
183
194
.
4.
Abbott
,
J. J.
,
Peyer
,
K. E.
,
Lagomarsino
,
M. C.
,
Zhang
,
L.
,
Dong
,
L.
,
Kaliakatsos
,
I. K.
, and
Nelson
,
B. J.
,
2009
, “
How Should Microrobots Swim?
Int. J. Rob. Res.
,
28
, pp.
1434
1447
.
5.
Belharet
,
K.
,
Folio
,
D.
, and
Ferreira
,
A.
,
2011
, “
MRI-Based Microrobotic System for the Propulsion and Navigation of Ferromagnetic Microcapsules
,”
Minimally Invasive Ther. Allied Technol.
,
19
(
3
), pp.
157
169
.
6.
Bergeles
,
C.
, and
Yang
,
G.-Z.
,
2014
, “
From Passive Tool Holders to Microsurgeons: Safer, Smaller, Smarter Surgical Robots
,”
IEEE Trans. Biomed. Eng.
,
61
(
5
), pp.
1565
1576
.
7.
Mahoney
,
A. W.
, and
Abbott
,
J. J.
,
2014
, “
Generating Rotating Magnetic Fields With a Single Permanent Magnet for Propulsion of Untethered Magnetic Devices in a Lumen
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
411
420
.
8.
Petruska
,
A. J.
, and
Abbott
,
J. J.
,
2014
, “
Omnimagnet: An Omnidirectional Electromagnet for Controlled Dipole-Field Generation
,”
IEEE Trans. Magn.
,
50
(
7
), p.
8400810
.
9.
Peyer
,
K. E.
,
Zhangb
,
L.
, and
Nelson
,
B. J.
,
2013
, “
Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications
,”
Nanoscale
,
5
(
4
), pp.
1259
1272
.
10.
Lien
,
G. S.
,
Liu
,
C. W.
,
Jiang
,
J. A.
,
Chuang
,
C. L.
, and
Teng
,
M. T.
,
2012
, “
Magnetic Control System Targeted for Capsule Endoscopic Operations in the Stomach—Design, Fabrication, and In Vitro and Ex Vivo Evaluations
,”
IEEE Trans. Biomed. Eng.
,
59
(
7
), pp.
2068
2079
.
11.
Sun
,
Z.-J.
,
Ye
,
B.
,
Qiu
,
Y.
,
Cheng
,
X.-G.
,
Zhang
,
H.-H.
, and
Liu
,
S.
,
2014
, “
Preliminary Study of a Legged Capsule Robot Actuated Wirelessly by Magnetic Torque
,”
IEEE Trans. Magn.
,
50
(
8
), p.
5100706
.
12.
Sun
,
Z.-J.
,
Cheng
,
X.-G.
,
Cao
,
S.
,
Ye
,
B.
,
Zhang
,
H.-H.
, and
Liu
,
S.
,
2014
, “
Multi-Applications of a Magnet Configuration in Actuating Capsule Endoscope
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Besacon, France, July 8–11, pp.
106
111
.
13.
Simi
,
M.
,
Gerboni
,
G.
,
Menciassi
,
A.
, and
Valdastri
,
P.
,
2013
, “
Magnetic Torsion Spring Mechanism for a Wireless Biopsy Capsule
,”
ASME J. Med. Devices
,
7
(
4
), p.
041009
.
14.
Yim
,
S.
,
Gultepe
,
E.
,
Gracias
,
D.
, and
Sitti
,
M.
,
2013
, “
Biopsy Using a Magnetic Capsule Endoscope Carrying, Releasing and Retrieving Untethered Micro-Grippers
,”
IEEE Trans. Biomed. Eng.
,
61
(
2
), pp.
513
521
.
15.
Gorlewicz
,
J. L.
,
Battaglia
,
S.
,
Smith
,
B. F.
,
Ciuti
,
G.
,
Gerding
,
J.
,
Menciassi
,
A.
,
Obstein
,
K. L.
,
Valdastri
,
P.
, and
Webster
,
R. J.
,
2013
, “
Wireless Insufflation of the Gastrointestinal Tract
,”
IEEE Trans. Biomed. Eng.
,
60
(
5
), pp.
1225
1233
.
16.
Munoz
,
F.
,
Alici
,
G.
, and
Li
,
W.
,
2014
, “
Design Optimization of a Magnetomechanical System for Drug Delivery in Wireless Capsule Endoscopy
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
),
Besacon
,
France
, July 8–11, pp.
1097
1102
.
17.
Woods
,
S. P.
, and
Constandinou
,
T. G.
,
2013
, “
Wireless Capsule Endoscope for Targeted Drug Delivery: Mechanics and Design Considerations
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
945
953
.
18.
Montague
,
R. G.
,
Bingham
,
C.
, and
Atallah
,
K.
,
2013
, “
Magnetic Gear Pole-Slip Prevention Using Explicit Model Predictive Control
,”
IEEE/ASME Trans. Mechatron.
,
18
(
5
), pp.
1535
1543
.
19.
Agashe
,
J. S.
, and
Arnold
,
D. P.
,
2008
, “
A Study of Scaling and Geometry Effects on the Forces Between Cuboidal and Cylindrical Magnets Using Analytical Force Solutions
,”
J. Phys. D
,
41
(
10
), pp.
1
9
.
20.
Furlani
,
E. P.
,
2000
, “
Analytical Analysis of Magnetically Coupled Multipole Cylinders
,”
J. Phys. D
,
33
(
1
), pp.
28
33
.
21.
Jørgensen
,
F. T.
,
Andersen
,
T. O.
, and
Rasmussen
,
P. O.
,
2008
, “
The Cycloid Permanent Magnetic Gear
,”
IEEE Trans. Ind. Appl.
,
44
(
6
), pp.
1659
1665
.
22.
Furlani
,
E. P.
,
1993
, “
Formulas for the Force and Torque of Axial Couplings
,”
IEEE Trans. Magn.
,
29
(
5
), pp.
2295
2301
.
23.
Furlani
,
E. P.
,
Reanik
,
S.
, and
Janson
,
W.
,
1994
, “
A Three-Dimensional Field Solution for Bipolar Cylinders
,”
IEEE Trans. Magn.
,
30
(
5
), pp.
2916
2919
.
24.
Ravaud
,
R.
, and
Lemarquand
,
G.
,
2010
, “
Magnetic Field Created by Uniformly Magnetized Tile Permanent Magnet
,”
Prog. Electromagn. Res. B
,
24
, pp.
17
32
.
25.
Munoz
,
F.
,
Alici
,
G.
, and
Li
,
W.
,
2015
, “
Optimization of Multiple Arc-Shaped Magnets for Drug Delivery in a Capsule Robot
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Busan, July 7–11, pp.
1
7
.
26.
Windt
,
C. W.
,
Soltner
,
H.
,
Dusschoten
,
D. V.
, and
Blümler
,
P.
,
2011
, “
A Portable Halbach Magnet That Can Be Opened and Closed Without Force: The NMR-CUFF
,”
J. Magn. Reson.
,
208
(
1
), pp.
27
33
.
27.
Sakellariou
,
D.
,
Hugon
,
C.
,
Guiga
,
A.
,
Aubert
,
G.
,
Cazaux
,
S.
, and
Hardy
,
P.
,
2010
, “
Permanent Magnet Assembly Producing a Strong Tilted Homogeneous Magnetic Field: Towards Magic Angle Field Spinning NMR and MRI
,”
Magn. Reson. Chem.
,
48
(
12
), pp.
903
908
.
28.
Soltner
,
H.
, and
Blümler
,
P.
,
2010
, “
Dipolar Halbach Magnet Stacks Made From Identically Shaped Permanent Magnets for Magnetic Resonance
,”
Concepts Magn. Reson., Part A
,
36A
(
4
), pp.
211
222
.
29.
Than
,
T. D.
,
Alici
,
G.
,
Harvey
,
S.
,
O′Keefe
,
G.
,
Zhou
,
H.
,
Li
,
W.
,
Cook
,
T.
, and
Alam-Fotias
,
S.
,
2014
, “
An Effective Localization Method for Robotic Endoscopic Capsules Using Multiple Positron Emission Markers
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1174
1186
.
30.
Munoz
,
F.
,
Alici
,
G.
, and
Li
,
W.
,
2015
, “
An Accurate Model for Size Optimization of an Embedded Permanent Magnet for Drug Delivery With Capsule Robots
,”
IEEE International Conference on Technologies for Practical Robot Applications
(
TePRA
), Woburn, MA, May 11–12, pp.
1
7
.
31.
Shigley
,
J. E.
, and
Uicker
,
J. J. J.
,
1995
,
Theory of Machines and Mechanisms
,
McGraw-Hill
,
Sydney
, pp.
616
629
.
32.
Park
,
S.
,
Koo
,
K.
,
Kim
,
G. S.
,
Bang
,
S. M.
,
Park
,
J. Y.
,
Song
,
S. Y.
, and
Cho
,
D. D.
,
2008
, “
A Novel Microactuator for Microbiopsy in Capsular Endoscopes
,”
J. Micromech. Microeng.
,
18
(
2
), pp.
25
32
.
You do not currently have access to this content.