Currently, end-to-end anastomosis of blood vessels is performed using suturing, which is time consuming, expensive, and subject to large degrees of human error. One promising alternative is a ring–pin coupling device. This device has been shown to be useful for venous anastomosis, but lacks the versatility necessary for arterial applications. The purpose of this study was to optimize a vascular coupling design that could be used for arteries and veins of various sizes. To achieve this, finite-element (FE) analysis was used to simulate the vessel–device interaction during anastomosis. Parametric simulations were performed to optimize the number of pins, the wing pivot point, and the pin offset of the design. The interaction of the coupler with various blood vessel sizes was also evaluated. Maximum strain in the vessel wall increased with the number of pins. The positions of the wings and pins were also important in dictating maximum strain, and improper dimensions lead to failure of the installation process. Extra force applied to the distal end of the vessel, or a supplementary tool, will be required during the coupler installation process to prevent vessels less than 3 mm inner diameter (0.5 mm wall thickness) from slipping off the coupler.

References

References
1.
Zdolsek
,
J.
,
Ledin
,
H.
, and
Lidman
,
D.
,
2005
, “
Are Mechanical Microvascular Anastomoses Easier to Learn Than Suture Anastomoses?
Microsurgery
,
25
(
8
), pp.
596
598
.
2.
Andel
,
C. J.
,
Pistecky
,
P. V.
, and
Borst
,
C.
,
2003
, “
Mechanical Properties of Porcine and Human Arteries: Implications for Coronary Anastomotic Connectors
,”
Ann. Thorac. Surg.
,
76
(
1
), pp.
58
64
.
3.
Ferrari
,
E.
,
Tozzi
,
P.
, and
von Segesser
,
L. K.
,
2007
, “
The Vascular Join: A New Sutureless Anastomotic Device to Perform End-to-End Anastomosis. Preliminary Results in an Animal Model
,”
Interact. Cardiovasc. Thorac. Surg.
,
6
, pp.
5
8
.
4.
Filsoufi
,
F. R.
,
Farivar
,
S.
,
Aklog
,
L.
,
Anderson
,
C. A.
,
Chen
,
R. H.
,
Lichtenstein
,
S.
,
Zhang
,
J.
, and
Adams
,
D. H.
,
2004
, “
Automated Distal Coronary Bypass With a Novel Magnetic Coupler (MVP System)
,”
J. Thorac. Cardiovasc. Surg.
,
127
(
1
), pp.
185
192
.
5.
Gummert
,
J. F.
,
Opfermann
,
U.
,
Jacobs
,
S.
,
Walther
,
T.
,
Kempfert
,
J.
,
Mohr
,
F. W.
, and
Falk
,
V.
,
2007
, “
Anastomotic Devices for Coronary Artery Bypass Grafting: Technological Options and Potential Pitfalls
,”
Comput. Biol Med.
,
37
(
10
), pp.
1384
1393
.
6.
Jacobs
,
S.
,
Mohr
,
F. W.
, and
Falk
,
V.
,
2004
, “
Facilitated Endoscopic Beating Heart Coronary Bypass Grafting Using Distal Anastomotic Device
,”
Int. Congr. Ser.
,
1268
, pp.
809
812
.
7.
Klima
,
U.
,
Maringka
,
M.
,
Bagaev
,
E.
,
Kirschner
,
S.
, and
Haverich
,
A.
,
2004
, “
Total Magnetic Vascular Coupling for Arterial Revascularization
,”
J. Thorac. Cardiovasc. Surg.
,
127
(
2
), pp.
602
603
.
8.
Lally
,
C.
,
Reid
,
A. J.
, and
Prendergast
,
P. J.
,
2004
, “
Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension
,”
Ann. Biomed. Eng.
,
32
(
10
), pp.
1355
1364
.
9.
Scheltes
,
J. S.
,
van Andel
,
C. J.
,
Pistecky
,
P. V.
, and
Borst
,
C.
,
2003
, “
Coronary Anastomotic Devices: Blood-Exposed Non-Intimal Surface and Coronary Wall Stress
,”
J. Thorac. Cardiovasc. Surg.
,
126
(
1
), pp.
191
199
.
10.
Suyker
,
W. J.
,
Buijsrogge
,
M. P.
,
Suyker
,
P. T.
,
Verlaan
,
C. W.
,
Borst
,
C.
, and
Grundeman
,
P. F.
,
2004
, “
Stapled Coronary Anastomosis With Minimal Intraluminal Artifact: The S2 Anastomotic System in the Off-Pump Porcine Model
,”
J. Thorac. Cardiovasc. Surg.
,
127
(
2
), pp.
498
503
.
11.
Ueda
,
K.
,
Mukai
,
T.
,
Ichinose
,
S.
,
Koyama
,
Y.
, and
Takakuda
,
K.
,
2010
, “
Bioabsorbable Device for Small-Caliber Vessel Anastomosis
,”
Microsurgery
,
30
(
6
), pp.
494
501
.
12.
Nakayama
,
K.
,
Yamamoto
,
K.
, and
Tamiya
,
T.
,
1962
, “
A New Simple Apparatus for Anastomosis of Small Vessels. Preliminary Report
,”
J. Int. Coll. Surg.
,
38
, pp.
12
26
.
13.
Ross
,
D. A.
,
Chow
,
J. Y.
,
Shin
,
J.
, and
Restifo
,
R.
,
2005
, “
Arterial Coupling for Microvascular Free Tissue Transfer in Head and Neck Reconstruction
,”
Arch. Otolaryngol. Head Neck Surg.
,
131
(
10
), pp.
891
895
.
14.
Spector
,
J. A.
,
Draper
,
L. B.
,
Levine
,
J. P.
, and
Ahn
,
C. Y.
,
2006
, “
Routine Use of Microvascular Coupling Device for Arterial Anastomosis in Breast Reconstruction
,”
Ann. Plast. Surg.
,
56
(
4
), pp.
365
368
.
15.
Gehrke
,
C.
,
Li
,
H.
,
Sant
,
H.
,
Gale
,
B.
, and
Agarwal
,
J.
,
2014
, “
Design, Fabrication and Testing of a Novel Vascular Coupling Device
,”
Biomed. Microdevices
,
16
(
1
), pp.
173
180
.
16.
Li
,
H.
,
Gehrke
,
C.
,
Gale
,
B. K.
,
Sant
,
H.
,
Coats
,
B.
, and
Agarwal
,
J.
,
2015
, “
A New Vascular Coupler Design for End-to-End Anastomosis: Fabrication and Proof-of-Concept Evaluation
,”
ASME J. Med. Devices
,
9
(
3
), p.
031002
.
17.
Chang
,
C. L.
,
Chen
,
C. S.
,
Huang
,
C. H.
, and
Hsu
,
M. L.
,
2012
, “
Finite Element Analysis of the Dental Implantation Using a Topology Optimization Method
,”
Med. Eng. Phys.
,
34
(
7
), pp.
999
1008
.
18.
Huang
,
T. H.
,
Feng
,
C. K.
,
Gung
,
Y. W.
,
Tsai
,
M. W.
,
Chen
,
C. S.
, and
Liu
,
C. L.
,
2006
, “
Optimization Design of Thumbspica Splint Using Finite Element Method
,”
Med. Biol. Eng. Comput.
,
44
(
12
), pp.
1105
1111
.
19.
Lee
,
C. H.
,
Shih
,
K. S.
,
Hsu
,
C. C.
, and
Cho
,
T.
,
2014
, “
Simulation-Based Particle Swarm Optimization and Mechanical Validation of Screw Position and Number for the Fixation Stability of a Femoral Locking Compression Plate
,”
Med. Eng. Phys.
,
36
(
1
), pp.
57
64
.
20.
Timmins
,
L. H.
,
Moreno
,
M. R.
,
Meyer
,
C. A.
,
Criscione
,
J. C.
,
Rachev
,
A.
, and
Moore
,
J. E.
, Jr
.,
2007
, “
Stented Artery Biomechanics and Device Design Optimization
,”
Med. Biol. Eng. Comput.
,
45
(
5
), pp.
505
513
.
21.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
,
2005
, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
,
38
(
8
), pp.
1574
1581
.
22.
Yamada
,
H.
, and
Evans
,
F. G.
,
1970
,
Strength of Biological Materials
,
Williams & Wilkins
,
Baltimore, MD
.
You do not currently have access to this content.