This paper presents a design of a passive spine exoskeleton which implements a “push–pull” external assistive strategy. The spine exoskeleton was designed for reducing the risk of back injury. It applies a pulling force on thoracic region and a pushing force on lumbar region during spine flexion/extension. The design was inspired by previous simulation work, where the results highly supported benefits of the push–pull strategy on reducing the back muscular efforts and bending moment for the sagittal spine flexion/extension. A passive physical prototype was designed and constructed to test the push–pull strategy on human subjects. Three subjects were able to repeat the identical dynamic spine flexion and extension tasks with the spine exoskeleton prototype. The surface electromyography showed a reduction of up to 24% at lumbar and 54% at thoracic level muscle for the human subjects wearing the exoskeleton suit to accomplish the same static tasks without any external assistance. The muscle force and intervertebral bending moment were estimated to be reduced by up to 479 N and 36 N · m, respectively.

References

References
1.
Hara
,
H.
, and
Sankai
,
Y.
,
2012
, “
HAL Equipped With Passive Mechanism
,” 2012
IEEE/SICE
International Symposium on System Integration
, Fukuoka, Japan, Dec. 16–18, pp.
1
6
.
2.
Adams
,
M. A.
,
Bogduk
,
N.
,
Kim
,
B.
,
Dolan
,
P.
, and
Freeman
,
B. J. C.
,
2013
,
The Biomechanics of Back Pain
,
3rd ed.
, Vol.
22
,
Elsevier
,
New York
, p.
4
.
3.
Panjabi
,
M. M.
,
1992
, “
The Stabilizing System of the Spine. Part I. Function, Dysfunction, Adaptation, and Enhancement
,”
J. Spinal Disord.
,
5
(
4
), pp.
383
389
; Discussion 397.
4.
Taal
,
S. R.
, and
Sankai
,
Y.
,
2011
, “
Exoskeletal Spine and Shoulders for Full Body Exoskeletons in Health Care
,”
Adv. Appl. Sci. Res.
,
2
(
6
), pp.
270
286
.
5.
Nelson
,
B. W.
,
Carpenter
,
D. M.
,
Dreisinger
,
T. E.
,
Mitchell
,
M.
,
Kelly
,
C. E.
,
Wegner
,
J. A.
,
Sw
,
A. N.
,
Dm
,
C.
,
Te
,
D.
,
Mitchell
,
M.
,
Ce
,
K.
, and
Ja
,
W.
,
1999
, “
Can Spinal Surgery be Prevented by Aggressive Strengthening Exercises? A Prospective Study of Cervical and Lumbar Patients
,”
Arch. Phys. Med. Rehabil.
,
80
(
1
), pp.
20
25
.
6.
Kazerooni
,
H.
,
Racine
,
J.
,
Huang
,
L.
, and
Steger
,
R.
,
2005
, “
On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE International Conference on Robotics and Automation, 2005
(
ICRA 2005
), Apr. 18–22, pp.
4353
4360
.
7.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
128
138
.
8.
Bogue
,
R.
,
2009
, “
Exoskeletons and Robotic Prosthetics: A Review of Recent Developments
,”
Ind. Rob. Int. J.
,
36
(
5
), pp.
421
427
.
9.
Sankai
,
Y.
,
2006
, “
Leading Edge of Cybernics: Robot Suit HAL
,” 2006
SICE-ICASE
International Joint Conference
, Busan, Korea, Oct. 18–21, Vol.
10
, pp.
P-1
P-2
.
10.
Park
,
J.-H.
,
Stegall
,
P.
,
Damiano
,
Z.
,
Vashista
,
V.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2013
, “
Design of the Second Spine: A Secondary Pathway to Transfer Loads From the Shoulders to the Pelvis
,”
ASME
Paper No. V06BT07A008.
11.
Zhang
,
H.
,
2014
, “
Design of a Passive Exoskeleton Spine
,” Masters thesis,
University of Massachusetts Amherst
.
12.
Seth
,
A.
,
Sherman
,
M.
,
Reinbolt
,
J. A.
, and
Delp
,
S. L.
,
2011
, “
OpenSim: A Musculoskeletal Modeling and Simulation Framework for In Silico Investigations and Exchange
,”
Procedia IUTAM
,
2
, pp.
212
232
.
13.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
14.
Delp
,
S.
,
Loan
,
P.
,
Hoy
,
M.
,
Zajac
,
F.
,
Topp
,
E.
, and
Rosen
,
J.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures PDF
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.
15.
Christophy
,
M.
,
Faruk Senan
,
N. A.
,
Lotz
,
J. C.
, and
O′Reilly
,
O. M.
,
2012
, “
A Musculoskeletal Model for the Lumbar Spine
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
19
34
.
16.
Howarth
,
S. J.
, and
Mastragostino
,
P.
,
2013
, “
Use of Kinetic and Kinematic Data to Evaluate Load Transfer as a Mechanism for Flexion Relaxation in the Lumbar Spine
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101004
.
17.
Jin
,
S.
,
Ning
,
X.
, and
Mirka
,
G. A.
,
2012
, “
An Algorithm for Defining the Onset and Cessation of the Flexion-Relaxation Phenomenon in the Low Back Musculature
,”
J. Electromyogr. Kinesiol.
,
22
(
3
), pp.
376
382
.
18.
Peach
,
J. P.
,
Sutarno
,
C. G.
, and
McGill
,
S. M.
,
1998
, “
Three-Dimensional Kinematics and Trunk Muscle Myoelectric Activity in the Young Lumbar Spine: A Database
,”
Arch. Phys. Med. Rehabil.
,
79
(
6
), pp.
663
669
.
19.
Colloca
,
C. J.
, and
Hinrichs
,
R. N.
,
2005
, “
The Biomechanical and Clinical Significance of the Lumbar Erector Spinae Flexion-Relaxation Phenomenon: A Review of Literature
,”
J. Manipulative Physiol. Ther.
,
28
(
8
), pp.
623
631
.
20.
Schultz
,
A. B.
,
Haderspeck-Grib
,
K.
,
Sinkora
,
G.
, and
Warwick
,
D. N.
,
1985
, “
Quantitative Studies of the Flexion-Relaxation Phenomenon in the Back Muscles.
,”
J. Orthop. Res.
,
3
(
2
), pp.
189
197
.
You do not currently have access to this content.