Minimally invasive sugery (MIS) has increasingly been used in different surgical routines despite having significant shortcomings such as a lack of tactile feedback. Restoring this missing tactile information, particularly the information gained through tissue palpation, would be a significant enhancement to MIS capabilities. Tissue palpation is particularly important and commonly used in locating embedded lumps. The present study is inspired by this major limitation of the MIS procedure and is aimed at developing a system to reconstruct the lost palpation capability of surgeons in an effective way. By collecting necessary information on the size and location of hidden features using MIS graspers equipped with tactile sensors, the information can be processed and graphically rendered to the surgeon. Therefore, using the proposed system, surgeons can identify the presence or absence, location, and approximate size of hidden lumps simply by grasping the target organ with a smart endoscopic grasper. The results of the conducted experiments on the prototyped MIS graspers represented by graphical images are compared with those of the finite element models.

1.
Bicchi
,
A.
,
Canepa
,
G.
,
Rossi
,
D. D.
,
Iacconi
,
P.
, and
Scilingo
,
P.
, 1999, “
A. Sensorized Minimally Invasive Surgery Tool for Detecting Tissue Elastic Properties
,”
Proceedings of the 1999 IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
.
2.
Dargahi
,
J.
, and
Najarian
,
S.
, 2005, “
Advances in Tactile Sensors Design∕Manufacturing and Its Impact on Robotics Applications—A Review
,”
Ind. Robot
0143-991X,
23
(
3
), pp
268
281
.
3.
Dargahi
,
J.
,
Parameswaran
,
M.
, and
Payandeh
,
S.
, 2000, “
A Micromachined Piezoelectric Tactile Sensor for an Endoscopic Grasper—Theory, Fabrication and Experiments
,”
J. Microelectromech. Syst.
1057-7157,
9
(
3
), pp.
329
335
.
4.
Fearing
,
R. S.
,
Moy
,
G.
, and
Tan
,
E.
, 1997, “
Some Basic Issues in Teletaction
,”
IEEE International Conference on Robotics and Automation
,
Albuquerque, NM
, pp.
3093
3099
.
5.
Eklund
,
A.
,
Bergh
,
A.
, and
Lindahl
,
O. A.
, 1999, “
A. Catheter Tactile Sensor for Measuring Hardness of Soft Tissue: Measurement in a Silicone Model and in an In Vitro Human prostate model
,”
Med. Biol. Eng. Comput.
0140-0118,
37
, pp.
618
624
.
6.
Howe
,
R. D.
,
Peine
,
W. J.
,
Kontarinis
,
D. A.
, and
Son
,
J. S.
, 1994, “
Remote Palpation Technology
,”
Proceedings of IEEE Engineering in Medicine and Biology Magazine
14
(
3
), pp.
318
323
.
7.
Wellman
,
P. S.
, and
Howe
,
R. D.
, 1999, “
Extracting Features From Tactile maps
,”
Proceedings of the Second International Conference on Medical Image Computing and Computer-Assisted Intervention
, pp.
1133
1142
.
8.
Hannaford
,
B.
,
Trujillo
,
J.
,
Sinanan
,
M.
,
Moreyra
,
M.
,
Rosen
,
J.
,
Brown
,
J.
,
Leuschke
,
R.
, and
MacFarlane
,
M.
, 1998, “
Computerized Endoscopic Surgical Grasper
,”
Studies in Health Technology Informatics: Medicine Meets Virtual Reality
,
ISO
,
Amsterdam
, pp.
265
271
.
9.
Miyagii
,
K.
,
Furuse
,
A.
,
Nakajima
,
J.
,
Kohno
,
T.
,
Ohtsuka
,
T.
,
Yagyu
,
K.
,
Oka
,
T.
, and
Omata
,
S.
, 1997, “
The Stiffness of Lymph Nodes Containing Lung Carcinoma Metastases: A New Diagnostic Parameter Measured by a Tactile Sensor
,”
Cancer
0008-543X,
80
.
10.
Wolfenbuttel
,
R. F.
, and
Regtien
,
P. P. L.
, 1991, “
Polysilicon Bridges for the Realization of Tactile Sensors
,”
Sens. Actuators, A
0924-4247,
ED-26
(
1–3
), pp.
257
264
.
11.
Kane
,
B. J.
,
Cutkosky
,
M. R.
, and
Kovacs
,
G. T. A.
, 1996, “
CMOS-Compatible Traction Stress Sensor for use in High-Resolution Tactile Imaging
,”
Sens. Actuators, A
0924-4247,
54
(
1–3
), pp.
511
516
.
12.
Gray
,
B. L.
, and
Fearing
,
R. S.
, 1996, “
A. Surface Micromachined Microtactile Sensor Array
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
, pp.
22
28
.
13.
Beebe
,
D. J.
,
Hsieh
,
A. S.
,
Radwin
,
R. G.
,
Denton
,
D. D.
, 1995, “
A. Silicon Force Sensor for Robotics and Medicine
,”
Sens. Actuators, A
0924-4247,
50
(
1–2
), pp.
55
65
.
14.
Wang
,
L.
, and
Beebe
,
D. J.
, 2000, “
A. Silicon-Based Shear Force Sensor: Development and Characterization
,”
Sens. Actuators, A
0924-4247,
ED-84
(
1–2
), pp.
33
44
.
15.
Omata
,
S.
,
Murayama
,
Y.
, and
Constantinou
,
C. E.
, 2004, “
Real Time Robotic Tactile Sensor System for the Determination of the Physical Properties of Biomaterials
,”
Sens. Actuators, A
0924-4247,
112
, pp.
278
285
.
16.
Barmana
,
I.
, and
Guhab
,
S. K.
, 2006, “
Analysis of a New Combined Stretch and Pressure Sensor for Internal Nodule Palpation
,”
Sens. Actuators, A
0924-4247,
125
, pp.
210
216
.
17.
Wang
,
Y.
,
Srikancbana
,
C. N. R.
, and
Freedmantt
,
G. M. T.
, 1999, “
Tactile Mapping of Palpable Abnormalities for Breast Cancer Diagnosis
,”
Proceedings of the 1999 IEEE International Conference on Robotics & Automation
,
Detroit, MI
, May.
18.
Yan
,
J.
,
Scott
,
P. K.
, and
Fearing
,
R. S.
, 1999, “
Inclusion Probing: Signal Detection and Haptic Playback of 2D FEM and Experimental Data
,”
1999 ASME International Mechanical Engineering Congress and Exposition
,
Nashville, TN
, Nov. 14–19.
19.
Shimizu
,
H.
,
Kiyono
,
S.
,
Gao
,
W.
, and
Shioji
,
H.
, 2005, “
A Biological Sensor for Detecting Foreign Bodies Using a Balloon-Probe
,”
Key Eng. Mater.
1013-9826,
295–296
, pp.
133
138
.
20.
Shikida
,
M.
,
Shimizu
,
T.
,
Sato
,
K.
, and
Itoigawa
,
K.
, 2003, “
Active Tactile Sensor for Detecting Contact Force and Hardness of an Object
,”
Sens. Actuators, A
0924-4247,
103
, pp.
213
218
.
21.
Najarian
,
S.
,
Dargahi
,
J.
, and
Zheng
,
X. Z.
, 2005, “
A Novel Method in Measuring the Stiffness of Sensed Objects With Applications for Biomedical Robotic Systems
,”
Key Eng. Mater.
1013-9826,
295–296
, pp.
133
138
.
22.
Lau
,
C. K. L.
,
Wagner
,
C. R.
, and
Howe
,
R. D.
, 2004, “
Algorithms for Tactile Rendering in Compliant Environments
,”
2004 Haptics Symposium
, pp.
32
39
.
23.
Wellman
,
P. S.
,
Howe
,
R. D.
,
Dewagan
,
N.
,
Cundari
,
M. A.
,
Dalton
,
E.
, and
Kern
,
K. A.
, 1999, “
Tactile Imaging: A Method for Documenting Breast Masses
,”
Proceedings of the First Joint BMES∕EMBS Conference
,
IEEE Computer Society
,
Piscataway, NJ
, pp.
1131
1132
.
24.
Wellman
,
P. S.
,
Dalton
,
E. P.
,
Krag
,
D.
,
Kern
,
K.
, and
Howe
,
R.
, 2001, “
Tactile Imaging of Breast Masses
,”
Arch. Surg. (Chicago)
0004-0010,
136
, pp.
204
208
.
25.
Wellman
,
P. S.
,
Howe
,
R. D.
,
Dewagan
,
N.
,
Cundari
,
M. A.
,
Dalton
,
E.
, and
Kern
,
K. A.
, 1999, “
Tactile Imaging: A Method For Documenting Breast Masses
,”
Proceedings of the First Joint BMES∕EMBS Conference
,
Atlanta
, p.
1131
.
26.
Galea
,
A. M.
, and
Howe
,
R. D.
, “
Liver Vessel Parameter Estimation From Tactile Imaging Information
,”
Proceedings of Medical Simulation: International Symposium-ISMS 2004
,
Cambridge, MA
, Jun. 17–18.
27.
Krouskop
,
T. A.
,
Wheeler
,
T. M.
,
Kallel
,
F.
,
Garra
,
B. S. S.
, and
Hall
,
T.
, 1998, “
The Elastic Moduli of Breast and Prostate Tissue Under Compression
,”
Ultrason. Imaging
0161-7346,
20
(
4
), pp.
260
274
.
28.
Sokhanvar
,
S.
,
Packirisamy
,
M.
, and
Dargahi
,
J.
, “
A Novel PVDF Based Softness and Pulse Sensor for Minimally Invasive Surgery
,”
The Third IEEE International Conference on Sensors
,
Austria
, pp.
24
27
.
29.
1994,
Handbook of Physiology Section 1: The Nervous System
,
S. R.
Geiger
, ed.,
American Physiological Society
.
30.
Sokhanvar
,
S.
,
Dargahi
,
J.
, and
Packirisamy
,
M.
, “
Nonlinear Modeling and Testing of Soft Tissue Embedded Lump for MIS applications
,”
Int. J. of Medical Robotics and Computer Assisted Surgery
, submitted.
31.
DAQ SCB-68, 68-Pin Shielded Connector Block User Manual, National Instruments, Dec. 2002.
32.
Goodfellow, 237 Lancaster Avenue, Suite 252, Devon, PA 19333-1594, USA, www.goodfellow.comwww.goodfellow.com.
You do not currently have access to this content.