The use of ultrasonography as an imaging modality has become widespread because of its ability to visualize the organs with no deleterious effects and low cost. Using ultrasonic liver images focal diseases can be identified by differences in echogenicity between normal and areas affected by diseases. In the presence of diffused disease, however, the entire organ may be affected. In that situation, there is no contrast in echo intensity on which to base a diagnosis. Hence it is difficult for an experienced clinician to diagnose the diffused liver diseases by simple visual interpretations. This can be improved by providing useful information, obtained by computer aided tissue characterization, that cannot be obtained by simple visual interpretation.

Many researchers have studied the problem of liver tissue characterization. It is difficult to classify human body organ tissues using shape or gray level information because...

1.
Nicholas
,
D.
,
Nassiri
,
D. K.
,
Garbutt
,
P.
, and
Hill
,
C. R.
, 1986, “
Tissue Characterization from Ultrasound B-Scan data
,”
Ultrasound Med. Biol.
0301-5629,
12
(
2
), pp.
135
143
.
2.
Paik
,
C. H.
, and
Fox
,
M. D.
, 1988, “
Fast Hartley Transform for Image Processing
,”
IEEE Trans. Med. Imaging
0278-0062,
7
, pp.
149
153
.
3.
Chen
,
C.-C.
,
Daponte
,
J. S.
, and
Fox
,
M. D.
, 1989, “
Fractal Feature Analysis and Classification in Medical Imaging
,”
IEEE Trans. Med. Imaging
0278-0062,
8
(
2
), pp.
133
142
.
4.
Wu
,
C.-M.
,
Chen
,
Y.-C.
, and
Hsieh
,
K.-S.
, 1992, “
Texture Features for Classification of Ultrasonic Liver Images
,”
IEEE Trans. Med. Imaging
0278-0062,
11
, pp.
141
152
.
5.
Haralick
,
R. M.
,
Shanmugam
,
K.
, and
Dinstein
,
I.
, 1973, “
Texture Features for Image Classification
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
SMC-3
(
6
), pp.
610
621
.
6.
Klein Gebbinck
,
M. S.
,
Verhoeven
,
J. T. M.
,
Thijssen
,
J. M.
, and
Schouten
,
T. E.
, 1993, “
Application of Neural Networks for the Classification of Diffuse Liver Disease by Quantitative Echography
,”
Ultrason. Imaging
0161-7346,
15
(
3
), pp.
205
217
.
7.
Kadah
,
Y. M.
,
Farag
,
A. A.
,
Zurada
,
J. M.
,
Badawi
,
A. M.
, and
Youssef
,
A.-B. M.
, 1996, “
Classification Algorithms for Quantitative Tissue Characterization of Diffuse Liver Disease from Ultrasound Images
,”
IEEE Trans. Med. Imaging
0278-0062,
15
(
4
), pp.
466
476
.
8.
Mojsilovic
,
A.
,
Popovic
,
M.
, and
Sevic
,
D.
, 1996, “
Classification of the Ultrasound Liver Images with the 2×1 D Wavelet Transform
,”
Proc., IEEE Int. Conf. Image Processing
, Kobe, Japan, Oct 24–28,
1
, pp.
367
370
.
9.
Mojsilovic
,
A.
,
Popovic
,
M.
,
Markovic
,
S.
, and
Krstic
,
M.
, 1998, “
Characterization of Visually Similar Diffuse Diseases from B-Scan Liver Images using Nonseparable Wavelet Transform
,”
IEEE Trans. Med. Imaging
0278-0062,
17
(
4
), pp.
541
549
.
10.
Pavlopoulos
,
S.
,
Kyriacou
,
E.
,
Koutsouris
,
D.
,
Blekas
,
K.
,
Stafyloptis
,
A.
, and
Zoumpoulis
,
P.
, 2000, “
Fuzzy Neural Network based Texture Analysis of Ultrasonic Images
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
19
, pp.
39
47
.
11.
Lee
,
W.-L.
,
Chen
,
Y.-C.
, and
Hsei
,
K.-S.
, 2003, “
Ultrasonic Liver Tissue Classification by Fractal Feature Vector Based on M-band Wavelet Transform
,”
IEEE Trans. Med. Imaging
0278-0062,
22
, pp.
382
392
.
12.
Sujana
,
H.
,
Swarnamani
,
S.
, and
Suresh
,
S.
, 1996, “
Application of Artificial Neural Network for the Classification of Liver Lesions by Image Texture Parameters
,”
Ultrasound Med. Biol.
0301-5629,
22
(
9
), pp.
1177
1181
.
13.
Ogawa
,
K.
,
Fukushima
,
M.
,
Kubota
,
K.
, and
Hisa
,
N.
, 1998, “
Computer Aided Diagnostic System for Diffused Liver Diseases with Ultrasonagraphy by Neural Network
,”
IEEE Trans. Nucl. Sci.
0018-9499,
45
, pp.
3069
3074
.
14.
Von Wouwer
,
G.
,
Scheunders
,
P.
, and
Van Dyck
,
D.
, 1999, “
Statistical Texture Characterization from Discrete Wavelet Representations
,”
IEEE Trans. Image Process.
1057-7149,
8
, pp.
592
598
.
15.
Mallet
,
S.
, 1989, “
A Theory for Multiresolution Signal Decomposition: The Wavelet Representation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
11
, pp.
674
693
.
16.
Mojsilovic
,
A.
,
Papovic
,
M. V.
, and
Rackov
,
D. M.
, 2000, “
On the Selection of an Optimal Wavelet Basis for Texture Characterization
,”
IEEE Trans. Image Process.
1057-7149,
9
(
12
), pp.
2043
2050
.
17.
Specht
,
D. F.
, 1990, “
Probabilistic Neural Networks
,”
Neural Networks
0893-6080,
3
, pp.
109
118
.
You do not currently have access to this content.