Mathematical models currently exist that explore the physiology of normal and traumatized intracranial function. Mechanical models are used to assess harsh environments that may potentially cause head injuries. However, few mechanical models are designed to study the adaptive physiologic response to traumatic brain injury. We describe a first-order physical model designed and fabricated to elucidate the complex biomechanical factors associated with dynamic intracranial physiology. The uni-directional flow device can be used to study interactions between the cranium, brain tissue, cerebrospinal fluid, vasculature, blood, and the heart. Solid and fluid materials were selected to simulate key properties of the cranial system. Total constituent volumes (solid and fluid) and volumetric flow (650mlmin) represent adult human physiology, and the lengths of the individual segments along the flow-path are in accord with Poiseuille’s equation. The physical model includes a mechanism to simulate autoregulatory vessel dynamics. Intracranial pressures were measured at multiple locations throughout the model during simulations with and without post-injury brain tissue swelling. Two scenarios were modeled for both cases: Applications of vasodilation/constriction and changes in the head of bed position. Statistical results indicate that all independent variables had significant influence over fluid pressures measured throughout the model (p<0.0001) including the vasoconstriction mechanism (p=0.0255). The physical model represents a first-order design realization that helps to establish a link between mathematical and mechanical models. Future designs will provide further insight into traumatic head injury and provide a framework for unifying the knowledge gained from mathematical models, injury mechanics, clinical observations, and the response to therapies.

1.
Rosner
,
M. J.
, 1993, “
Pathophysiology and Management of Increased Intracranial Pressure
,” in
Neurosurgical Intensive Care
,
B. T.
Andrews
, ed.,
McGraw-Hill
,
NY
.
2.
Aboy
,
M.
,
McNames
,
J.
,
Wakeland
,
W.
, and
Goldstein
,
B.
, 2005, “
Pulse and Mean Intracranial Pressure Analysis in Pediatric Traumatic Brain Injury
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
95
, pp.
307
310
.
3.
Czonyka
,
M.
,
Piechnik
,
S.
,
Richards
,
H.
,
Kirkpatrick
,
P.
,
Smielewski
,
P.
, and
Pickard
,
J.
, 1997, “
Contribution of Mathematical Modeling to the Interpretation of Bedside Tests of Cerebrovascular Autoregulation
,”
J. Neurosurg.
0022-3085,
63
, pp.
721
731
.
4.
Ursino
,
M.
, and
Lodi
,
C. A.
, 1997, “
A Simple Mathematical Model of the Interaction Between Intracranial Pressure and Cerebral Hemodynamics
,”
J. Appl. Phys.
0021-8979,
82
(
4
), pp.
1256
1269
.
5.
Wakeland
,
W.
, and
Goldstein
,
B.
, 2005, “
A Computer Model of Intracranial Pressure Dynamics During Traumatic Brain Injury That Explicitly Models Fluid Flows and Volumes
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
95
, pp.
321
326
.
6.
Zong
,
Z.
,
Lee
,
H. P.
, and
Lu
,
C.
, 2006, “
A Three-Dimensional Human Head Finite Element Model and Power Flow in a Human Head Subject to Impact Loading
,”
J. Biomech.
0021-9290,
39
(
2
), pp.
284
292
.
7.
Cirovic
,
S.
,
Walsh
,
C.
, and
Fraser
,
W. D.
, 2001, “
A Mechanical Model of Cerebral Circulation During Sustained Acceleration
,”
Aviat Space Environ. Med.
0095-6562,
72
(
8
), pp.
704
712
.
8.
Cirovic
,
S.
,
Walsh
,
C.
, and
Fraser
,
W. D.
, 2002, “
Wave Propagation in a System of Coaxial Tubes Filled With Incompressible Media: A Model of Pulse Transmission in the Intracranial Arteries
,”
J. Fluids Struct.
0889-9746,
16
(
8
), pp.
1029
1049
.
9.
Cieslicki
,
K.
, and
Ciesla
,
D.
, 2005, “
Investigations of Flow and Pressure Distributions in Physical Model of the Circle of Willis
,”
J. Biomech.
0021-9290,
38
(
11
), pp.
2302
2310
.
10.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
, 2004, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
226
236
.
11.
Kurtcuoglu
,
V.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2005, “
Computational Modeling of the Mechanical Behavior of the Cerebrospinal Fluid System
,”
J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
264
269
.
12.
Cirovic
,
S.
,
Walsh
,
C.
, and
Fraser
,
W. D.
, 2003, “
Mathematical Study of the Role of Nonlinear Venous Compliance in the Cranial Volume-Pressure Test
,”
Med. Biol. Eng. Comput.
0140-0118,
41
(
5
), pp.
579
588
.
13.
Kohles
,
S. S.
,
Roberts
,
J. B.
,
Upton
,
M. L.
,
Wilson
,
C. G.
,
Bonassar
,
L. J.
, and
Schlichting
,
A. L.
, 2001, “
Direct Perfusion Measurements of Cancellous Bone Anisotropic Permeability
,”
J. Biomech.
0021-9290,
34
(
9
), pp.
1197
1202
.
14.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer
,
NY
.
15.
Rowell
,
L. B.
, 1986,
Human Circulation and Regulation During Physical Stress
,
Oxford University Press
,
UK
.
16.
Stan
,
E.
,
McNames
,
J.
,
Kohles
,
S. S.
,
Biber
,
C.
,
Biberic
,
N.
,
Leech
,
N.
,
Mangan
,
R.
,
McKinney
,
T. J.
,
Surdu
,
M. L.
, and
Goldstein
,
B.
, 2004, “
Mechanical Vasoconstriction for a Cerebral Myogenic Autoregulatory Model
,”
26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society—Proceedings
, pp.
883
886
.
17.
Brands
,
D. W.
,
Peters
,
G. W.
, and
Bovendeerd
,
P. H.
, 2004, “
Design and Numerical Implementation of a 3D Nonlinear Viscoelastic Constitutive Model for Brain Tissue During Impact
,”
J. Biomech.
0021-9290,
37
(
1
), pp.
127
134
.
18.
Mangan
,
R.
,
Kohles
,
S. S.
,
Biberic
,
N.
,
Leech
,
N.
,
McKinney
,
T. J.
,
Stan
,
E.
,
Surdu
,
M. L.
,
Biber
,
C.
, and
McNames
,
J.
, 2004, “
Capstone Design of a Cranial Vascular Mechanical Model
,”
American Society of Biomechanics, 28th Annual Meeting
, #240.
19.
Gijsen
,
F. J.
,
Allanic
,
E.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
, 1999, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90Degrees Curved Tube
,”
J. Biomech.
0021-9290,
32
(
7
), pp.
705
713
.
20.
Karch
,
R.
,
Neumann
,
F.
,
Neumann
,
M.
, and
Schreiner
,
W.
, 2000, “
Staged Growth of Optimized Arterial Model Trees
,“
Ann. Biomed. Eng.
0090-6964,
28
(
5
), pp.
495
511
.
21.
Karch
,
R.
,
Neumann
,
F.
,
Neumann
,
M.
,
Szawlowski
,
P.
, and
Schreiner
,
W.
, 2003, “
Voronoi Polyhedra Analysis of Optimized Arterial Tree Models
,”
Ann. Biomed. Eng.
0090-6964,
31
(
5
), pp.
548
563
.
22.
Ferrández
,
A.
,
David
,
T.
,
Bamford
,
J.
,
Scott
,
J.
, and
Guthrie
,
A.
, 2000, “
Computational Models of Blood Flow in the Circle of Willis
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
(
1
), pp.
1
26
.
23.
Moore
,
S.
,
David
,
T.
,
Chase
,
J. G.
,
Arnold
,
J.
, and
Fink
,
J.
, 2006, “
3D Models of Blood Flow in the Cerebral Vasculature
,”
J. Biomech.
0021-9290,
39
(
8
), pp.
1459
1463
.
24.
Moore
,
S. M.
,
Moorhead
,
K. T.
,
Chase
,
J. G.
,
David
,
T.
, and
Fink
,
J.
, 2005, “
One-Dimensional and Three-Dimensional Models of Cerebrovascular Flow
,”
J. Biomech. Eng.
0148-0731,
127
(
3
), pp.
440
454
.
25.
David
,
G.
, and
Humphrey
,
J. D.
, 2003, “
Further Evidence for the Dynamic Stability of Intracranial Saccular Aneurysms
,”
J. Biomech.
0021-9290,
36
(
8
), pp.
1143
1150
.
26.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics
,
Springer
,
NY
.
27.
Miller
,
K.
, and
Chinzei
,
K.
, 1997, “
Constitutive Modeling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
0021-9290,
30
(
11–12
), pp.
1115
1121
.
28.
LaPlaca
,
M. C.
,
Cullen
,
D. K.
,
McLoughlin
,
J. J.
, and
Cargill
,
R. S.
, II
, 2005, “
High Rate Shear Strain of Three-Dimensional Neural Cell Cultures: A New In Vitro Traumatic Brain Injury Model
,”
J. Biomech.
0021-9290,
38
(
5
), pp.
1093
1105
.
29.
Johnson
,
E. A.
, and
Young
,
P. G.
, 2005, “
On the Use of a Patient-Specific Rapid-Prototyped Model to Simulate the Response of the Human Head to Impact and Comparison With Analytical and Finite Element Models
,”
J. Biomech.
0021-9290,
38
(
1
), pp.
39
45
.
30.
Humphrey
,
J. D.
, and
Delange
,
S. L.
, 2004,
An Introduction to Biomechanics: Solids and Fluids Analysis and Design
,
Springer
,
NY
.
31.
Miller
,
K.
,
Chinzei
,
K.
,
Orssengo
,
G.
, and
Bednarz
,
P.
, 2000, “
Mechanical Properties of Brain Tissue In Vivo: Experiment and Computer Simulation
,”
J. Biomech.
0021-9290,
33
(
11
), pp.
1369
1376
.
32.
Kohles
,
S. S.
, and
Roberts
,
J. B.
, 2002, “
Linear Poroelastic Cancellous Bone Anisotropy: Trabecular Solid Elastic and Fluid Transport Properties
,”
J. Biomech. Eng.
0148-0731,
124
(
5
), pp.
521
526
.
33.
Kohles
,
S. S.
, 2000, “
Applications of an Anisotropic Parameter to Cortical Bone
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
11
(
4
), pp.
261
265
.
34.
Monson
,
K. L.
,
Goldsmith
,
W.
,
Barbaro
,
N. M.
, and
Manley
,
G. T.
, 2003, “
Axial Mechanical Properties of Fresh Human Cerebral Blood Vessels
,”
J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
288
294
.
35.
Piper
,
I.
,
Spiegelberg
,
A.
,
Whittle
,
I.
,
Signorini
,
D.
, and
Mascia
,
L.
, 1999, “
A Comparative Study of the Spiegelberg Compliance Device With a Manual Volume-Injection Method: A Clinical Evaluation in Patients With Hydrocephalus
,”
Br. J. Neurosurg.
0268-8697,
13
(
6
), pp.
581
586
.
36.
Guyton
,
A. C.
, and
Hall
,
J. E.
, 2000,
Textbook of Medical Physiology
,
10th ed.
,
W.B. Saunders Company
,
PA
.
37.
Sherwood
,
L.
, 1989,
Human Physiology: From Cells to Systems
,
West Publishing Company
,
NY
.
You do not currently have access to this content.