Flapping-wing flight is a challenging system integration problem for designers due to tight coupling between propulsion and flexible wing subsystems with variable kinematics. High fidelity models that capture all the subsystem interactions are computationally expensive and too complex for design space exploration and optimization studies. A combination of simplified modeling and validation with experimental data offers a more tractable approach to system design and integration, which maintains acceptable accuracy. However, experimental data on flapping-wing aerial vehicles which are collected in a static laboratory test or a wind tunnel test are limited because of the rigid mounting of the vehicle, which alters the natural body response to flapping forces generated. In this study, a flapping-wing aerial vehicle is instrumented to provide in-flight data collection that is unhindered by rigid mounting strategies. The sensor suite includes measurements of attitude, heading, altitude, airspeed, position, wing angle, and voltage and current supplied to the drive motors. This in-flight data are used to setup a modified strip theory aerodynamic model with physically realistic flight conditions. A coupled model that predicts wing motions is then constructed by combining the aerodynamic model with a model of flexible wing twist dynamics and enforcing motor torque and speed bandwidth constraints. Finally, the results of experimental testing are compared to the coupled modeling framework to establish the effectiveness of the proposed approach for improving predictive accuracy by reducing errors in wing motion specification.

References

References
1.
Pennycuick
,
C.
,
1990
, “
Predicting Wingbeat Frequency and Wavelength of Birds
,”
J. Exp. Biol.
,
150
(
1
), pp.
171
185
.
2.
Gerdes
,
J. W.
,
Wilkerson
,
S. A.
, and
Gupta
,
S. K.
,
2012
, “
A Review of Bird-Inspired Flapping Wing Miniature Air Vehicle Designs
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021003
.
3.
de Croon, G. C. H. E., Ruijsink, R., De Wagter, C., Perçin, M., and Remes, B. D. W., 2016,
The DelFly: Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot
, Springer, Dordrecht, The Netherlands.
4.
Zdunich
,
P.
,
Bilyk
,
D.
,
MacMaster
,
M.
,
Loewen
,
D.
,
DeLaurier
,
J.
,
Kombluh
,
R.
,
Low
,
T.
,
Stanford
,
S.
, and
Holeman
,
D.
,
2007
, “
Development and Testing of the Mentor Flapping-Wing Micro Air Vehicle
,”
J. Aircr.
,
44
(
5
), pp.
1701
1711
.
5.
Keennon
,
M.
,
Klingebiel
,
K.
,
Won
,
H.
, and
Andriukov
,
A.
,
2012
, “
Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle
,”
AIAA
Paper No. 2012-0588.
6.
Pornsin-Sirirak
,
T.
,
Tai
,
Y.
,
Ho
,
C.
, and
Keennon
,
M.
,
2001
, “
Microbat: A Palm-Sized Electrically Powered Ornithopter
,”
NASA/JPL
Workshop on Biomorphic Robotics
, Pasadena, CA, Aug. 14–17.
7.
Send
,
W.
,
Fischer
,
M.
,
Jebens
,
K.
,
Mugrauer
,
R.
,
Nagarathinam
,
A.
, and
Scharstein
,
F.
,
2012
, “
Artificial Hinged-Wing Bird With Active Torsion and Partially Linear Kinematics
,” 28th Congress of the International Council of the Aeronautical Sciences (
ICAS
), Brisbane, Australia, Sept. 23–28.
8.
Mueller
,
D.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2009
, “
Measurement of Thrust and Lift Forces Associated With Drag of Compliant Flapping Wing for Micro Air Vehicles Using a New Test Stand Design
,”
Exp. Mech.
,
50
(6), pp.
725
735
.
9.
Hubel
,
T. Y.
, and
Tropea
,
C.
,
2009
, “
Experimental Investigation of a Flapping Wing Model
,”
Exp. Fluids
,
46
(
5
), pp.
945
961
.
10.
Shkarayev
,
S.
, and
Maniar
,
G.
,
2013
, “
Experimental and Computational Modeling of the Kinematics and Aerodynamics of Flapping Wing
,”
J. Aircr.
,
50
(
6
), pp.
1734
1747
.
11.
Shkarayev
,
S.
, and
Silin
,
D.
,
2010
, “
Aerodynamics of Cambered Membrane Flapping Wings
,”
AIAA
Paper No. 2010-58.
12.
Song
,
A.
,
Tian
,
X.
,
Israeli
,
E.
,
Galvao
,
R.
,
Bishop
,
K.
,
Swartz
,
S.
, and
Breuer
,
K.
,
2008
, “
Aeromechanics of Membrane Wings With Implications for Animal Flight
,”
AIAA J.
,
46
(
8
), pp.
2096
2106
.
13.
Caetano
,
J.
,
Percin
,
M.
,
Oudheusden
,
B. V.
,
Remes
,
B.
,
Wagter
,
C. D.
,
Croon
,
G. D.
, and
Visser
,
C. D.
,
2015
, “
Error Analysis and Assessment of Unsteady Forces Acting on a Flapping Wing Micro Air Vehicle: Free Flight Versus Wind-Tunnel Experimental Methods
,”
Bioinspiration Biomimetics
,
10
(
5
), p.
056004
.
14.
Grauer
,
J. A.
, and
Hubbard
,
J. E.
,
2008
, “
Development of a Sensor Suite for a Flapping-Wing UAV Platform
,”
AIAA
Paper No. 2008-224.
15.
DeLaurier
,
J.
,
1993
, “
An Aerodynamic Model for Flapping-Wing Flight
,”
Aeronaut. J.
,
97
(
964
), pp.
125
130
.
16.
Jones
,
R. T.
,
1940
, “
The Unsteady Lift of a Wing of Finite Aspect Ratio
,” NACA Technical Report, Report No. NACA-TR-681.
17.
Mazaheri
,
K.
, and
Ebrahimi
,
A.
,
2012
, “
Performance Analysis of a Flapping-Wing Vehicle Based on Experimental Aerodynamic Data
,”
J. Aerosp. Eng.
,
25
(
1
), pp.
45
50
.
18.
Hunsaker
,
D. F.
, and
Phillips
,
W. F.
,
2015
, “
Propulsion Theory of Flapping Airfoils, Comparison With Computational Fluid Dynamics
,”
AIAA
Paper No. 2015-0257.
19.
Kim
,
D.-K.
,
Lee
,
J.-S.
, and
Han
,
J.-H.
,
2011
, “
Improved Aerodynamic Model for Efficient Analysis of Flapping-Wing Flight
,”
AIAA J.
,
49
(
4
), pp.
868
872
.
20.
Smith
,
M. J. C.
,
Wilkin
,
P. J.
, and
Williams
,
M. H.
,
1996
, “
The Advantages of an Unsteady Panel Method in Modelling the Aerodynamic Forces on Rigid Flapping Wings
,”
J. Exp. Biol.
,
199
(
5
), pp.
1073
1083
.
21.
Gerdes
,
J. W.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2015
, “
A Systematic Exploration of Wing Size on Flapping Wing Air Vehicle Performance
,”
ASME
Paper No. DETC2015-47316.
22.
Gerdes
,
J. W.
,
Roberts
,
L.
,
Barnett
,
E.
,
Kempny
,
J.
,
Perez-Rosado
,
A.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2013
, “
Wing Performance Characterization for Flapping Wing Air Vehicles
,”
ASME
Paper No. DETC2013-12479.
23.
Karpelson
,
M.
,
Whitney
,
J.
,
Wei
,
G.-Y.
, and
Wood
,
R.
,
2010
, “
Energetics of Flapping-Wing Robotic Insects: Towards Autonomous Hovering Flight
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
1630
1637
.
24.
Madangopal
,
R.
,
Khan
,
Z.
, and
Agrawal
,
S.
,
2004
, “
Energetics Based Design of Small Flapping Wing Air Vehicles
,”
IEEE International Conference on Robotics and Automation
, (
ICRA
), New Orleans, LA, Apr. 26–May 1, pp.
2367
2372
.
25.
Madangopal
,
R.
,
Khan
,
Z.
, and
Agrawal
,
S.
,
2005
, “
Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
809
817
.
26.
Doman
,
D. B.
,
Tang
,
C. P.
, and
Regisford
,
S.
, “
Modeling Interactions Between Flexible Flapping Wing Spars, Mechanisms, and Drive Motors
,”
J. Guid. Control Dyn.
,
34
(
5
), pp.
1457
1473
.
27.
Gerdes
,
J. W.
,
Holness
,
A.
,
Perez-Rosado
,
A.
,
Roberts
,
L.
,
Greisinger
,
A.
,
Barnett
,
E.
,
Kempny
,
J.
,
Lingam
,
D.
,
Yeh
,
C.-H.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2014
, “
Robo Raven: A Flapping-Wing Air Vehicle With Highly Compliant and Independently Controlled Wings
,”
Soft Rob.
,
1
(
4
), pp.
275
288
.
28.
Gerdes
,
J. W.
,
Cellon
,
K.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2013
, “
Characterization of the Mechanics of Compliant Wing Designs for Flapping-Wing Miniature Air Vehicles
,”
Exp. Mech.
,
53
(
9
), pp.
1561
1571
.
29.
Scherer
,
J. O.
,
1968
, “
Experimental and Theoretical Investigation of Large Amplitude Oscillation Foil Propulsion Systems
,” Hydronautics, Inc., Laurel, MD, Report No.
TR-662-1-F
.
30.
Bartz
,
P.
,
2016
, “
Building an AHRS Using the SparkFun “9DOF Razor IMU” or “9DOF Sensor Stick”
,” GitHub, Inc., San Francisco, CA, accessed Aug. 10, 2016, https://github.com/ptrbrtz/razor-9dof-ahrs/wiki/tutorial#mathematical-background-and-firmware-internals
31.
Rayner
,
J. M. V.
,
2001
, “
Mathematical Modelling of the Avian Flight Power Curve
,”
Math. Methods Appl. Sci.
,
24
(
17–18
), pp.
1485
1514
.
32.
Ogata
,
K.
,
2009
,
Modern Control Engineering
,
3rd ed.
,
Pearson
,
Upper Saddle River, NJ
.
This content is only available via PDF.