For more than a century, rigid-body displacements have been viewed as affine transformations described as homogeneous transformation matrices wherein the linear part is a rotation matrix. In group-theoretic terms, this classical description makes rigid-body motions a semidirect product. The distinction between a rigid-body displacement of Euclidean space and a change in pose from one reference frame to another is usually not articulated well in the literature. Here, we show that, remarkably, when changes in pose are viewed from a space-fixed reference frame, the space of pose changes can be endowed with a direct product group structure, which is different from the semidirect product structure of the space of motions. We then show how this new perspective can be applied more naturally to problems such as monitoring the state of aerial vehicles from the ground, or the cameras in a humanoid robot observing pose changes of its hands.

References

References
1.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
2.
Adorno
,
B. V.
, and
Fraisse
,
P.
,
2017
, “
The Cross-Motion Invariant Group and Its Application to Kinematics
,”
IMA J. Math. Control Inf.
,
34
(4), pp. 1359–1378.
3.
Cayley
,
A.
,
1843
, “
On the Motion of Rotation of a Solid Body
,”
Cambridge Math. J.
,
3
, pp.
224
232
.
4.
Euler
,
L.
,
1758
, “
Du Mouvement de Rotation des Corps Solides Autour d'un Axe Variable
,”
Mémoires de l'Académie des Sciences de Berlin
,
14
, pp.
154
193
.
5.
Rodrigues
,
O.
,
1840
, “
Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ces déplacements considérés independamment des causes qui peuvent les produire
,”
J. Math. Pures Appl.
,
5
, pp.
380
440
.
6.
Blaschke
,
W.
, and
Müller
,
H. R.
,
1956
,
Ebene Kinematik
,
Verlag von R. Oldenbourg
,
Munich, Germany
.
7.
Chasles
,
M.
,
1830
, “
Note sur les propriétés générales du système de deux corps semblables entre eux et placés d'une manière quelconque dans l'espace; et sur le déplacement fini ou infiniment petit d'un corps solide libre
,”
Férussac, Bull. Sci. Math.
,
14
, pp.
321
326
.
8.
Altmann
,
S. L.
,
2005
,
Rotations, Quaternions, and Double Groups
,
Dover
, Mineola, NY.
9.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
Dover, Mineola, NY
.
10.
Angeles
,
J.
,
1988
,
Rational Kinematics
,
Springer-Verlag
,
New York
.
11.
Herve
,
J. M.
,
1999
, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Machine Design
,”
Mech. Mach. Theory
,
34
(5), pp.
719
730
.
12.
Karger
,
A.
, and
Novák
,
J.
,
1985
,
Space Kinematics and Lie Groups
,
Gordon and Breach Science Publishers
,
New York
.
13.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
MIT Press
, Cambridge, MA.
14.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
15.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mapping
,”
ASME J. Mech. Transm. Autom. Des.
,
105
(
3
), pp.
460
467
.
16.
Selig
,
J. M.
,
2005
,
Geometrical Fundamentals of Robotics
,
2nd ed.
,
Springer
,
New York
.
17.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
, Cambridge, UK.
18.
Crane
,
C. D.
, III
., and
Duffy
,
J.
,
2008
,
Kinematic Analysis of Robot Manipulators by Carl D. Crane III (2008-01-28)1623
,
Cambridge University Press
, Cambridge, UK.
19.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
, Oxford, UK.
20.
Duffy
,
J.
,
Hunt
,
H. E. M.
, and
Lipkin
,
H.
, eds.,
2000
,
Proceedings of a Symposium Commemorating the Legacy, Works, and Life of Sir Robert S. Ball
,
Cambridge University Press
, Cambridge, UK.
21.
Lipkin
,
H.
,
1985
, “Geometry and Mappings of Screws With Applications to the Hybrid Control of Robotic Manipulators,”
Ph.D. thesis
, University of Florida, Gainesville, FL.
22.
Rooney
,
J.
,
1978
, “
A Comparison of Representations of General Spatial Screw Displacements
,”
Environ. Plann. B
,
5
(
1
), pp.
45
88
.
23.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
,
2016
,
Harmonic Analysis for Engineers and Applied Scientists
,
Dover
,
Mineola, NY
.
24.
Stramigioli
,
S.
,
2001
, “
Nonintrinsicity of References in Rigid-Body Motions
,”
ASME J. Appl. Mech.
,
68
(
6
), pp.
929
936
.
25.
Legnani
,
G.
,
Casolo
,
F.
,
Righettini
,
P.
, and
Zappa
,
B.
,
1996
, “
A Homogeneous Matrix Approach to 3D Kinematics and Dynamics—I: Theory
,”
Mech. Mach. Theory
,
31
(
5
), pp.
573
587
.
26.
Selig
,
J.
,
2006
, “
Active Versus Passive Transformations in Robotics
,”
Rob. Autom. Mag.
,
13
(
1
), pp.
79
84
.
27.
Fanghella
,
P.
, and
Galletti
,
C.
,
1995
, “
Metric Relations and Displacement Groups in Mechanism and Robot Kinematic
,”
ASME J. Mech. Des.
,
117
(
3
), pp.
470
478
.
28.
Kazerounian
,
K.
, and
Rastegar
,
J.
,
1992
, “Object Norms: A Class of Coordinate and Metric Independent Norms for Displacement,” Flexible Mech., Dynam. Anal.,
47
, pp. 271–275.
29.
Martinez
,
J. M. R.
, and
Duffy
,
J.
,
1995
, “
On the Metrics of Rigid Body Displacement for Infinite and Finite Bodies
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
41
47
.
30.
Park
,
F. C.
,
1995
, “
Distance Metrics on the Rigid-Body Motions With Applications to Mechanism Design
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
48
54
.
31.
Larochelle
,
P. M.
,
Murray
,
A. P.
, and
Angeles
,
J.
,
2007
, “
A Distance Metric for Finite Sets of Rigid-Body Displacements Via the Polar Decomposition
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
883
886
.
32.
Lin
,
Q.
, and
Burdick
,
J. W.
,
2000
, “
Objective and Frame-Invariant Kinematic Metric Functions for Rigid Bodies
,”
Int. J. Rob. Res.
,
19
(
6
), pp.
612
625
.
33.
Amato
,
N. M.
,
Bayazit
,
O. B.
,
Dale
,
L. K.
,
Jones
,
C.
, and
Vallejo
,
D.
,
1998
, “
Choosing Good Distance Metrics and Local Planners for Probabilistic Roadmap Methods
,”
IEEE International Conference on Robotics and Automation
(
ICRA'98
), Leuven, Belgium, May 20, pp.
630
637
.
34.
Chirikjian
,
G. S.
,
2015
, “
Partial Bi-Invariance of SE(3) Metrics
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011008
.
This content is only available via PDF.