Abstract

In robotics, the origami-based design methodology uses straightforward fabrication and assembly processes to create small-scale parallel mechanisms. Delta mechanisms are among the well-known parallel mechanisms used mostly in pick-and-place operations due to their capability to reach high speeds and accelerations. In this work, we present a novel Delta mechanism based on origami-inspired designs and two-dimensional layer-by-layer fabrication methods, reducing the time and errors in manufacturing. We developed a new flat parallelogram providing translations in X–Y–Z directions, respecting the Delta mechanism’s conventional kinematic models. The fabrication and assembly processes include laser machining and lamination, eliminating manual-folding and bonding steps. The mechanism operates in a 20 × 20 × 20 mm3 workspace and a 17.5 cm diameter circular footprint when it is entirely flat. The kinematic performance of the mechanism is analyzed using a six degrees-of-freedom position sensor on the end effector. The experiments are conducted to follow circular trajectories with varying radii at different heights. Despite having no feedback control from the end effector, the mechanism follows the given trajectories with 1.5 mm root-mean-square (RMS) precision. We also present the effects of the elasticity of flexible materials at different regions of the mechanism on the performance of the Delta robot.

References

References
1.
Zhakypov
,
Z.
, and
Paik
,
J.
,
2018
, “
Design Methodology for Constructing Multimaterial Origami Robots and Machines
,”
IEEE Trans. Rob.
,
34
(
1
), pp.
151
165
. 10.1109/TRO.2017.2775655
2.
Doshi
,
N.
,
Goldberg
,
B.
,
Sahai
,
R.
,
Jafferis
,
N.
,
Aukes
,
D.
,
Wood
,
R. J.
, and
Paulson
,
J. A.
,
2015
, “
Model Driven Design for Flexure-Based Microrobots
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Dec.
, pp.
4119
4126
.
3.
Salerno
,
M.
,
Firouzeh
,
A.
, and
Paik
,
J.
,
2017
, “
A Low Profile Electromagnetic Actuator Design and Model for an Origami Parallel Platform
,”
ASME J. Mech. Robot.
,
9
(
4
), p.
041005
. 10.1115/1.4036425
4.
Whitney
,
J. P.
,
Sreetharan
,
P. S.
,
Ma
,
K. Y.
, and
Wood
,
R. J.
,
2011
, “
Pop-Up Book MEMS
,”
J. Micromech. Microeng.
,
21
(
11
), p.
115021
. 10.1088/0960-1317/21/11/115021
5.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2011
, “
Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
4608
4613
.
6.
Aukes
,
D. M.
,
Goldberg
,
B.
,
Cutkosky
,
M. R.
, and
Wood
,
R. J.
,
2014
, “
An Analytic Framework for Developing Inherently-Manufacturable Pop-Up Laminate Devices
,”
Smart Mater. Struct.
,
23
(
9
), p.
094013
. 10.1088/0964-1726/23/9/094013
7.
Baisch
,
A. T.
,
Ozcan
,
O.
,
Goldberg
,
B.
,
Ithier
,
D.
, and
Wood
,
R. J.
,
2014
, “
High Speed Locomotion for a Quadrupedal Microrobot
,”
Int. J. Rob. Res.
,
33
(
8
), pp.
1063
1082
. 10.1177/0278364914521473
8.
Birkmeyer
,
P.
,
Peterson
,
K.
, and
Fearing
,
R. S.
,
2009
, “
DASH: A Dynamic 16g Hexapedal Robot
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
St. Louis, MO
,
Oct. 10–15
, pp.
2683
2689
.
9.
Koh
,
J. S.
,
Yang
,
E.
,
Jung
,
G.-P.
,
Jung
,
S.-P.
,
Son
,
J. H.
,
Lee
,
S.-I.
,
Jablonski
,
P. G.
,
Wood
,
R. J.
,
Kim
,
H.-Y.
, and
Cho
,
K.-J.
,
2015
, “
Jumping on Water: Surface Tension-Dominated Jumping of Water Striders and Robotic Insects
,”
Science
,
349
(
6247
), pp.
517
521
. 10.1126/science.aab1637
10.
Wood
,
R. J.
,
2008
, “
The First Takeoff of a Biologically Inspired At-Scale Robotic Insect
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
341
347
. 10.1109/TRO.2008.916997
11.
Wood
,
R. J.
,
Avadhanula
,
S.
,
Sahai
,
R.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
Microrobot Design Using Fiber Reinforced Composites
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052304
. 10.1115/1.2885509
12.
Wood
,
R. J.
,
Finio
,
B.
,
Karpelson
,
M.
,
Ma
,
K.
,
Pérez-Arancibia
,
N. O.
,
Sreetharan
,
P. S.
,
Tanaka
,
H.
, and
Whitney
,
J. P.
,
2012
, “
Progress on ‘Pico’ Air Vehicles
,”
Int. J. Rob. Res.
,
31
(
11
), pp.
1292
1302
. 10.1177/0278364912455073
13.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2014
, “
A Novel 4-DOFs Origami Enabled, SMA Actuated, Robotic End-Effector for Minimally Invasive Surgery
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
2844
2849
.
14.
Gafford
,
J.
,
Ranzani
,
T.
,
Russo
,
S.
,
Aihara
,
H.
,
Thompson
,
C.
,
Wood
,
R.
, and
Walsh
,
C.
,
2016
, “
Snap-On Robotic Wrist Module for Enhanced Dexterity in Endoscopic Surgery
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
June
, pp.
4398
4405
.
15.
Russo
,
S.
,
Ranzani
,
T.
,
Gafford
,
J.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2016
, “
Soft Pop-Up Mechanisms for Micro Surgical Tools: Design and Characterization of Compliant Millimeter-Scale Articulated Structures
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
June
, pp.
750
757
.
16.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
. 10.1126/science.1252610
17.
Zhakypov
,
Z.
,
Mete
,
M.
,
Fiorentino
,
J.
, and
Paik
,
J.
,
2019
, “
Programmable Fluidic Networks Design for Robotic Origami Sequential Self-Folding
,”
2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)
,
Seoul, South Korea
,
Apr. 14–18
, pp.
814
820
.
18.
Zhang
,
K.
, and
Dai
,
J. S.
,
2013
, “
Classification of Origami-Enabled Foldable Linkages and Emerging Applications
,”
Volume 6B: 37th Mechanisms and Robotics Conference
,
Portland, OR
,
Aug.
, pp.
1
9
.
19.
Rodriguez Leal
,
E.
, and
Dai
,
J. S.
,
2007
, “
From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms
,”
Volume 8: 31st Mechanisms and Robotics Conference, Parts A and B
,
Las Vegas, NV
,
Jan.
, pp.
1183
1193
.
20.
Demaurex
,
M.-O.
,
1999
, “The Delta Robot Within the Industry,”
Parallel Kinematic Machines
,
C. R.
Boër
,
L.
Molinari-Tosatti
, and
K. S.
Smith
, eds.,
Springer
,
London
, pp.
395
399
.
21.
López
,
M.
,
Castillo
,
E.
,
García
,
G.
, and
Bashir
,
A.
,
2006
, “
Delta Robot: Inverse, Direct, and Intermediate Jacobians
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
220
(
1
), pp.
103
109
. 10.1243/095440606X78263
22.
Tanikawa
,
T.
,
Ukiana
,
M.
,
Morita
,
K.
,
Koseki
,
Y.
,
Ohba
,
K.
,
Fujii
,
K.
, and
Arai
,
T.
,
2002
, “
Design of 3DOF Parallel Mechanism With Thin Plate for Micro Finger Module in Micro Manipulation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
,
Oct.
, Vol.
2
, pp.
1778
1783
.
23.
Rey
,
L.
, and
Clavel
,
R.
,
1999
, “The Delta Parallel Robot,”
Parallel Kinematic Machines
, Vol.
53
, 9,
C. R.
Boër
,
L.
Molinari-Tosatti
, and
K. S.
Smith
, eds.,
Springer
,
London
, pp.
401
417
.
24.
Correa
,
J. E.
,
Toombs
,
J.
,
Toombs
,
N.
, and
Ferreira
,
P. M.
,
2016
, “
Laminated Micro-Machine: Design and Fabrication of a Flexure-Based Delta Robot
,”
J. Manuf. Process.
,
24
(
Part 2
), pp.
370
375
. 10.1016/j.jmapro.2016.06.016
25.
McClintock
,
H.
,
Temel
,
F. Z.
,
Doshi
,
N.
,
Koh
,
J. S.
, and
Wood
,
R. J.
,
2018
, “
The MilliDelta: A High-Bandwidth, High-Precision, Millimeter-Scale Delta Robot
,”
Sci. Robot.
,
3
(
14
), p.
eaar3018
. 10.1126/scirobotics.aar3018
26.
Kosinska
,
A.
,
Galicki
,
M.
, and
Kedzior
,
K.
,
2003
, “
Designing and Optimization of Parameters of Delta-4 Parallel Manipulator for a Given Workspace
,”
J. Robot. Syst.
,
20
(
9
), pp.
539
548
. 10.1002/rob.10104
27.
Jian
,
S.
, and
Lou
,
Y.
,
2017
, “
Application of Motion Control System for Delta Parallel Robot
,”
2017 IEEE International Conference on Information and Automation (ICIA)
,
Macau, China
,
July
, pp.
732
736
.
You do not currently have access to this content.