Abstract

This paper focuses on the reconfiguration of a 3-(rR)PS metamorphic parallel mechanism based on complete workspace and operation mode analysis. The mechanism consists of three (rR)PS legs, and each (rR) joint is composed of two perpendicular revolute joints. One of the (rR) joint axes can be reconfigured continuously, which allows the mechanism to exhibit three distinct configurations. Initially, the constraint equations are derived by using algebraic geometry approach, and the primary decomposition is computed for the three configurations. It reveals that the 3-(rR)PS metamorphic parallel mechanism can exhibit one up to two operation modes among three configurations. When the second axes of the three (rR) joints intersect at a finite point and not coplanar, the 3-(rR)PS metamorphic parallel mechanism has only one operation mode. If the second axes of the three (rR) joints are coplanar, the 3-(rR)PS metamorphic parallel mechanism has two operation modes. It is shown that both operation modes have the same motion type, namely, 1T2R motion. However, to realize the same trajectories in both operation modes, the moving platform will have different orientations. Hence, the orientation workspaces of both operation modes are characterized and the axodes are used to compare the instantaneous motion of the moving platform when passing through the same trajectories. Based on these results, an identification approach is introduced to identify which operation mode a given mechanism pose belongs to and this provides a useful method for trajectory planning.

References

References
1.
Setchi
,
R. M.
, and
Lagos
,
N.
,
2004
, “
Reconfigurability and Reconfigurable Manufacturing Systems: State-of-the-Art Review
,”
2nd IEEE International Conference on Industrial Informatics, 2004. INDIN ’04
,
Berlin, Germany
,
June 24–26
, pp.
529
535
.
2.
Wohlhart
,
K.
,
1996
,
Kinematotropic Linkages
,
Springer Netherlands
,
Dordrecht
, pp.
359
368
.
3.
Kong
,
X.
,
2018
, “
A Variable-DOF Single-Loop 7R Spatial Mechanism With Five Motion Modes
,”
Mech. Mach. Theory
,
120
(
2
), pp.
239
249
. 10.1016/j.mechmachtheory.2017.10.005
4.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
. 10.1115/1.2829470
5.
Zhang
,
L.
, and
Dai
,
J. S.
,
2009
, “
An Overview of the Development on Reconfiguration of Metamorphic Mechanisms
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
June 22–24
, pp.
8
12
.
6.
Zhang
,
L.
, and
Dai
,
J. S.
,
2008
, “
Reconfiguration of Spatial Metamorphic Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011012
. 10.1115/1.2963025
7.
Gan
,
D.
, and
Dai
,
J. S.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
. 10.1115/1.3211023
8.
Gan
,
D.
,
Liao
,
Q.
,
Dai
,
J. S.
,
Wei
,
S.
, and
Seneviratne
,
L. D.
,
2009
, “
Forward Displacement Analysis of a New 1CCC–5SPS Parallel Mechanism Using Gröbner Theory
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
223
(
5
), pp.
1233
1241
. 10.1243/09544062JMES1185
9.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2014
, “
Constraint-Plane-Based Synthesis and Topology Variation of a Class of Metamorphic Parallel Mechanisms
,”
J. Mech. Sci. Technol.
,
28
(
10
), pp.
4179
4191
. 10.1007/s12206-014-0931-7
10.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Variable Motion/Force Transmissibility of a Metamorphic Parallel Mechanism With Reconfigurable 3T and 3R Motion
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051001
. 10.1115/1.4032409
11.
Gan
,
D.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2011
, “
Constraint-Based Limb Synthesis and Mobility-Change-Aimed Mechanism Construction
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051001
. 10.1115/1.4003920
12.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121001
. 10.1115/1.4002691
13.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2012
, “
Geometric Constraint and Mobility Variation of Two 3SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
. 10.1115/1.4007920
14.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M.-C.
,
2014
, “
A New Class of Reconfigurable Parallel Kinematic Machines
,”
Mech. Mach. Theory
,
79
(
9
), pp.
173
183
. 10.1016/j.mechmachtheory.2014.04.011
15.
Gan
,
D.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Unified Kinematics and Optimal Design of a 3rRPS Metamorphic Parallel Mechanism With a Reconfigurable Revolute Joint
,”
Mech. Mach. Theory
,
96
(
2
), pp.
239
254
. 10.1016/j.mechmachtheory.2015.08.005
16.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
,
Constraint Singularities as C-Space Singularities
,
Springer Netherlands
,
Dordrecht
, pp.
183
192
.
17.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
(
4
), pp.
188
201
. 10.1016/j.mechmachtheory.2013.12.010
18.
Kong
,
X.
,
2016
, “
Reconfiguration Analysis of a 4-DOF 3-RER Parallel Manipulator With Equilateral Triangular Base and Moving Platform
,”
Mech. Mach. Theory
,
98
(
4
), pp.
180
189
. 10.1016/j.mechmachtheory.2015.12.007
19.
Schadlbauer
,
J.
,
Walter
,
D.
, and
Husty
,
M.
,
2014
, “
The 3-RPS Parallel Manipulator From An Algebraic Viewpoint
,”
Mech. Mach. Theory
,
75
(
5
), pp.
161
176
. 10.1016/j.mechmachtheory.2013.12.007
20.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech., Trans., Autom. Des.
,
105
(
4
), pp.
705
712
. 10.1115/1.3258540
21.
Husty
,
M. L.
,
Pfurner
,
M.
,
Schröcker
,
H. -P.
, and
Brunnthaler
,
K.
,
2007
, “
Algebraic Methods in Mechanism Analysis and Synthesis
,”
Robotica
,
25
(
6
), pp.
661
675
. 10.1017/S0263574707003530
22.
Nayak
,
A.
,
Stigger
,
T.
,
Husty
,
M. L.
,
Wenger
,
P.
, and
Caro
,
S.
,
2018
, “
Operation Mode Analysis of 3-RPS Parallel Manipulators Based on Their Design Parameters
,”
Comput. Aided Geom. Des.
,
63
(
7
), pp.
122
134
. 10.1016/j.cagd.2018.05.003
23.
Nurahmi
,
L.
,
Caro
,
S.
,
Wenger
,
P.
,
Schadlbauer
,
J.
, and
Husty
,
M.
,
2016
, “
Reconfiguration Analysis of a 4-RUU Parallel Manipulator
,”
Mech. Mach. Theory
,
96
(
2
), pp.
269
289
. 10.1016/j.mechmachtheory.2015.09.004
24.
Coste
,
M.
, and
Mady Demdah
,
K.
,
2015
, “
Extra Modes of Operation and Self-Motions in Manipulators Designed for Schoenflies Motion
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041020
. 10.1115/1.4029501
25.
Nurahmi
,
L.
,
Caro
,
S.
, and
Wenger
,
P.
,
2015
, “
Operation Modes and Self-Motions of a 2-RUU Parallel Manipulator
,”
Recent Advances in Mechanism Design for Robotics
,
S.
Bai
and
M.
Ceccarelli
, eds.,
Springer International Publishing
,
Cham
, pp.
417
426
.
26.
Nurahmi
,
L.
,
Caro
,
S.
, and
Wenger
,
P.
,
2015
, “
Design of 3-RPS Parallel Manipulators Based on Operation Modes
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
423
432
.
27.
Nurahmi
,
L.
,
Caro
,
S.
, and
Solichin
,
M.
,
2019
, “
A Novel Ankle Rehabilitation Device Based on a Reconfigurable 3-RPS Parallel Manipulator
,”
Mech. Mach. Theory
,
134
(
4
), pp.
135
150
. 10.1016/j.mechmachtheory.2018.12.017
28.
Nurahmi
,
L.
,
Solichin
,
M.
,
Harnany
,
D.
, and
Kurniawan
,
A.
,
2017
, “
Dimension Synthesis of 3-RPS Parallel Manipulator With Intersecting r-Axes for Ankle Rehabilitation Device
,”
2017 18th International Conference on Advanced Robotics (ICAR)
,
Hong Kong
,
July 10–12
, pp.
269
274
.
29.
Nurahmi
,
L.
, and
Solichin
,
M.
,
2017
, “
Motion Type of 3-RPS Parallel Manipulator for Ankle Rehabilitation Device
,”
2017 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)
,
Surabaya, Indonesia
,
Oct. 12–14
, pp.
74
79
.
30.
Nayak
,
A.
,
Nurahmi
,
L.
,
Wenger
,
P.
, and
Caro
,
S.
,
2017
, “Comparison of 3-RPS and 3-SPR Parallel Manipulators Based on Their Maximum Inscribed Singularity-Free Circle,”
New Trends in Mechanism and Machine Science
,
P.
Wenger
and
P.
Flores
, eds.,
Springer International Publishing
,
Cham
, pp.
121
130
.
31.
Huang
,
Z.
, and
Fang
,
Y.
,
1995
, “
Motion Characteristics and Rotational Axis Analysis of Three DOF Parallel Robot Mechanisms
,”
IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century
,
Vancouver, BC, Canada
,
Oct. 22–25
, Vol.
1
, pp.
67
71
.
32.
Nurahmi
,
L.
,
Schadlbauer
,
J.
,
Caro
,
S.
,
Husty
,
M.
, and
Wenger
,
P.
,
2015
, “
Kinematic Analysis of the 3-RPS Cube Parallel Manipulator
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011008
. 10.1115/1.4029305
33.
Chen
,
Z.
,
Ding
,
H.
,
Cao
,
W.
, and
Huang
,
Z.
,
2013
, “
Axodes Analysis of the Multi DOF Parallel Mechanisms and Parasitic Motion
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
, Vol.
6A
, p.
V06AT07A052
.
34.
Bonev
,
I. A.
,
2008
, “
Direct Kinematics of Zero-Torsion Parallel Mechanisms
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
3851
3856
.
35.
Nurahmi
,
L.
,
Caro
,
S.
, and
Wenger
,
P.
,
2015
, “
Operation Modes and Singularities of 3-PRS Parallel Manipulators With Different Arrangements of p-Joints
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, Vol.
5C
, p.
V05CT08A015
.
36.
Schadlbauer
,
J.
,
Nurahmi
,
L.
,
Husty
,
M.
,
Wenger
,
P.
, and
Caro
,
S.
,
2015
, “Operation Modes in Lower-Mobility Parallel Manipulators,”
Interdisciplinary Applications of Kinematics
,
A.
Kecskeméthy
and
F.
Geu Flores
, eds.,
Springer International Publishing
,
Cham
, pp.
1
9
.
37.
Bottema
,
O.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
,
Dover Publications Inc.
,
New York
.
You do not currently have access to this content.