Abstract

In this paper, the solution region synthesis methodology (abbreviated as SRSM below) for the eight-precision-point path synthesis of planar four-bar mechanisms is presented. The so-called solution region synthesis methodology represents an infinite number of mechanism solutions in a plane, and the solution region is the area where the mechanism solutions are distributed in the plane. The x-coordinate and the y-coordinate of the plane are both taken as the concerned parameters of mechanisms. Furthermore, characteristic curves of mechanisms can be expressed in the plane. In addition, a defect judgment method is proposed, which can be realized in the computer program. The defective solutions can be eliminated efficiently, and the solutions without defects are obtained using the proposed method. After considering and imposing additional design requirements, the linkages of different types and different curve shapes are classified in the solution region. Finally, taking the path generation for eight points as the example, the methodology of establishing the solution region and the feasible solution region are presented, and the synthesis results are illustrated.

References

References
1.
Bulatović
,
R. R.
, and
Dordević
,
S. R.
,
2009
, “
On the Optimum Synthesis of a Four-Bar Linkage Using Differential Evolution and Method of Variable Controlled Deviations
,”
Mech. Mach. Theory
,
44
(
1
), pp.
235
246
. 10.1016/j.mechmachtheory.2008.02.001
2.
Sleesongsom
,
S.
, and
Bureerat
,
S.
,
2017
, “
Four-Bar Linkage Path Generation Through Self-Adaptive Population Size Teaching-Learning Based Optimization
,”
Knowledge-Based Syst.
,
135
, pp.
180
191
. 10.1016/j.knosys.2017.08.012
3.
Singh
,
R.
,
Chaudhary
,
H.
, and
Singh
,
A. K.
,
2017
, “
Defect-Free Optimal Synthesis of Crank-Rocker Linkage Using Nature-Inspired Optimization Algorithms
,”
Mech. Mach. Theory
,
116
, pp.
105
122
. 10.1016/j.mechmachtheory.2017.05.018
4.
Bulatović
,
R. R.
,
Miodragović
,
G.
, and
Bošković
,
M. S.
,
2016
, “
Modified Krill Herd (MKH) Algorithm and Its Application in Dimensional Synthesis of a Four-Bar Linkage
,”
Mech. Mach. Theory
,
95
, pp.
1
21
. 10.1016/j.mechmachtheory.2015.08.004
5.
Lin
,
W. Y.
, and
Hsiao
,
K. M.
,
2017
, “
A New Differential Evolution Algorithm With a Combined Mutation Strategy for Optimum Synthesis of Path-Generating Four-Bar Mechanisms
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
14
), pp.
2690
2705
. 10.1177/0954406216638887
6.
Buśkiewicz
,
J.
,
2015
, “
A Method for Optimal Path Synthesis of Four-Link Planar Mechanisms
,”
Inverse Probl. Sci. Eng.
,
23
(
5
), pp.
818
850
. 10.1080/17415977.2014.939654
7.
Kafash
,
S. H.
, and
Nahvi
,
A.
,
2017
, “
Optimal Synthesis of Four-Bar Path Generator Linkages Using Circular Proximity Function
,”
Mech. Mach. Theory
,
115
, pp.
18
34
. 10.1016/j.mechmachtheory.2017.04.010
8.
Yu
,
H.
,
Tang
,
D.
, and
Wang
,
X.
,
2007
, “
Study on a New Computer Path Synthesis Method of a Four-Bar Linkage
,”
Mech. Mach. Theory
,
42
(
4
), pp.
383
392
. 10.1016/j.mechmachtheory.2006.05.003
9.
Sun
,
J.
, and
Chu
,
J.
,
2010
, “
Unified Approach to Synthesis of Coupler Curves of Linkage by Fourier Series
,”
J. Mech. Eng.
,
46
(
13
), p.
006
. 10.3901/jme.2010.13.031
10.
Sun
,
J.
,
Chu
,
J.
, and
Sun
,
B.
,
2012
, “
A Unified Model of Harmonic Characteristic Parameter Method for Dimensional Synthesis of Linkage Mechanism
,”
Appl. Math. Model.
,
36
(
12
), pp.
6001
6010
. 10.1016/j.apm.2012.01.052
11.
Galán-Marín
,
G.
,
Alonso
,
F. J.
, and
Del Castillo
,
J. M.
,
2009
, “
Shape Optimization for Path Synthesis of Crank-Rocker Mechanisms Using a Wavelet-Based Neural Network
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1132
1143
. 10.1016/j.mechmachtheory.2008.09.006
12.
Liu
,
W.
,
Sun
,
J.
,
Zhang
,
B.
, and
Chu
,
J.
,
2017
, “
Wavelet Feature Parameters Representations of Open Planar Curves
,”
Appl. Math. Model.
,
57
, pp.
614
624
. 10.1016/j.apm.2017.05.035
13.
Peng
,
Q.
,
Zhang
,
T.
, and
Liu
,
H.
,
2004
, “
Path Generation Synthesis of Planar 4-bar Linkage With Five Precision Points Using Wu’s Method
,”
Mach. Des. Manuf.
,
4
, pp.
66
67
.
14.
Wu
,
W.
,
1978
, “
On the Decision Problem and the Mechanization of Theorem-Proving in Elementary Geometry
,”
Sci. Sin.
,
21
(
2
), pp.
159
172
.
15.
Brake
,
D. A.
,
Hauenstein
,
J. D.
,
Murray
,
A. P.
,
Myszka
,
D. H.
, and
Wampler
,
C. W.
,
2016
, “
The Complete Solution of Alt–Burmester Synthesis Problems for Four-Bar Linkages
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041018
. 10.1115/1.4033251
16.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
153
159
. 10.1115/1.2916909
17.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
SIAM Press
,
Philadelphia, PA
, p.
25
.
18.
Plecnik
,
M. M.
, and
Fearing
,
R. S.
,
2017
, “
Finding Only Finite Roots to Large Kinematic Synthesis Systems
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021005
. 10.1115/1.4035967
19.
Han
,
J.
, and
Cao
,
Y.
,
2017
, “
Synthesis of 4C and RCCC Linkages to Visit Four Positions Based on Solution Region Methodology
,”
ASME
Paper No. DETC2017-68214, p.
V05AT08A052
. 10.1115/detc2017-68214
20.
Cao
,
Y.
, and
Han
,
J.
,
2016
, “
Synthesis of RCCC Linkage to Visit Four Given Positions Based on Solution Region
,”
Trans. Chin. Soc. Agric. Mach.
,
47
(
8
), pp.
399
405
.
21.
Cui
,
G.
, and
Han
,
J.
,
2016
, “
The Solution Region-Based Synthesis Methodology for a 1-DOF Eight-bar Linkage
,”
Mech. Mach. Theory
,
98
, pp.
231
241
. 10.1016/j.mechmachtheory.2015.12.011
22.
Han
,
J.
, and
Cao
,
Y.
,
2018
, “
Solution Region Synthesis Methodology of RCCC Linkages for Four Poses
,”
Mech. Sci.
,
9
(
2
), pp.
297
305
. 10.5194/ms-9-297-2018
23.
Yin
,
L.
,
Huang
,
L.
,
Huang
,
J.
,
Tian
,
L.
, and
Li
,
F.
,
2019
, “
Solution-Region-Based Synthesis Approach for Selecting Optimal Four-Bar Linkages With the Ball-Burmester Point
,”
Mech. Sci.
,
10
(
1
), pp.
25
33
. 10.5194/ms-10-25-2019
24.
Han
,
J.
, and
Liu
,
W.
,
2018
, “
On the Solution of Multi-Precision-Point Path Synthesis of Four-Bar Mechanisms Based on Solution Region Methodology
,”
ASME
Paper No. DETC2018-85807, p.
V05AT07A040
. 10.1115/detc2018-85807
25.
Roth
,
B.
, and
Freudenstein
,
F.
,
1963
, “
Synthesis of Path-Generating Mechanisms by Numerical Means
,”
J. Eng. Ind.
,
85
(
3
), pp.
298
306
. 10.1115/1.3669870
26.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C.W.
,
2015
, “Bertini: Software for Numerical Algebraic Geometry,”
Bertini 1.5
,
University of Notre Dame
,
Notre Dame, IN
, www.Bertini.nd.edu.
27.
Luck
,
K.
, and
Modler
,
K.
,
1990
,
Getriebetechnick Analyse-Synthese-Optimierung
,
Akademie-Verlag Berlin
,
Berlin
, pp.
33
34
.
28.
Norton
,
L.
,
2007
,
DESIGN OF MACHINERY: An Introduction to the Synthesis of Mechanisms and Machines
,
4th ed.
,
McGraw-Hill
,
New York
, p.
182
.
You do not currently have access to this content.