A general optimization model for the dimensional synthesis of defect-free revolute-cylindrical-cylindrical-cylindrical joint (or RCCC) motion generators is formulated and demonstrated in this work. With this optimization model, the RCCC dimensions required to approximate an indefinite number of precision positions are calculated. The model includes constraints to eliminate order branch and circuit defects—defects that are common in dyad-based dimensional synthesis. Therefore, the novelty of this work is the development of a general optimization model for RCCC motion generation for an indefinite number of precision positions that simultaneously considers order, branch, and circuit defect elimination. This work conveys both the benefits and drawbacks realized when implementing the optimization model on a personal computer using the commercial mathematical analysis software package matlab.

References

References
1.
Cao
,
Y.
, and
Han
,
J.
,
2016
, “
Synthesis of RCCC Linkage to Visit Four Given Positions Based on Solution Region
,”
Trans. Chin. Soc. Agric. Mach.
,
47
(
8
), pp.
399
405
.
2.
Bai
,
S.
, and
Angeles
,
J.
,
2015
, “
Synthesis of RCCC Linkages to Visit Four Given Poses
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031004
.
3.
Sun
,
J. W.
,
Mu
,
D. Q.
, and
Chu
,
J. K.
,
2012
, “
Fourier Series Method for Path Generation of RCCC Mechanism
,”
J. Mech. Eng. Sci.
,
226
(
3
), pp.
816
827
.
4.
Figliolini
,
G.
,
Rea
,
P.
, and
Angeles
,
J.
,
2016
, “
The Synthesis of the Axodes of RCCC Linkages
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021001
.
5.
Sun
,
J.
,
Liu
,
Q.
, and
Chu
,
J.
, 2017, “
Motion Generation of RCCC Mechanism Using Numerical Atlas
,”
Mech. Based Des. Struct. Mach.
,
45
(1), pp. 62–75.
6.
Marble
,
S. D.
, and
Pennock
,
G. R.
,
2000
, “
Algebraic-Geometric Properties of the Coupler Curves of the RCCC Spatial Four-Bar Mechanism
,”
Mech. Mach. Theory
,
35
(
5
), pp.
675
693
.
7.
Cavacece
,
M.
,
Pennestrì
,
E.
,
Valentini
,
P. P.
, and
Vita
,
L.
,
2004
, “
Mechanical Efficiency Analysis of a Cardan Joint
,”
ASME
Paper No. DETC2004-57317.
8.
Cavacece
,
M.
,
Pennestrì
,
E.
,
Valentini
,
P. P.
, and
Vita
,
L.
,
2004
, “
A Dual Number Approach to the Kinematic Analysis of Spatial Linkages With Dimensional and Geometric Tolerances
,”
ASME
Paper No. DETC2004-57324.
9.
Pennestrì
,
E.
, and
Stefanelli
,
R.
,
2007
, “
Linear Algebra and Numerical Algorithms Using Dual Numbers
,”
Multibody Syst. Dyn.
,
18
(
3
), pp.
323
344
.
10.
Reinholtz
,
C. F.
,
Sandor
,
G. N.
, and
Duffy
,
J.
,
1986
, “
Branching Analysis of Spherical RRRR and Spatial RCCC Mechanisms
,”
ASME J. Mech. Transm. Autom. Des.
,
108
(
4
), pp.
481
486
.
11.
Wang
,
S.
,
Dong
,
H.
,
Wang
,
L.
, and
Wang
,
D.
,
2005
, “
Optimal Design of a New Type Looper Mechanism With Spatial RCCC Mechanism
,”
Chin. J. Mech. Eng.
,
41
(
8
), pp.
115
119
.
12.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
,
1978
,
Kinematics and Mechanism Design
,
Wiley
,
New York
.
13.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Defects in Link Mechanisms and Solution Rectification
,”
Mech. Mach. Theory
,
37
(
9
), pp.
851
876
.
14.
MathWorks, 2017, “Constrained Nonlinear Optimization Algorithms,” MathWorks, Natick, MA, accessed June 22, 2017, https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
15.
Acharyya
,
S. K.
, and
Mandal
,
M.
,
2009
, “
Performance of EAs for Four-Bar Linkage Synthesis
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1784
1794
.
16.
Cabrera
,
J. A.
,
Simon
,
A.
, and
Prado
,
M.
,
2002
, “
Optimal Synthesis of Mechanisms With Genetic Algorithms
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1165
1177
.
You do not currently have access to this content.