This paper presents a novel fingertip system with a two-layer structure for robotic hands. The outer part of the structure consists of a rubber bag filled with fluid, called the “fluid fingertip,” while the inner part consists of a rigid link mechanism called a “microgripper.” The fingertip thus is a rigid/fluid hybrid system. The fluid fingertip is effective for grasping delicate objects, that is, it can decrease the impulsive force upon contact, and absorb uncertainties in object shapes and contact force. However, it can only apply a small grasping force such that holding a heavy object with a robotic hand with fluid fingertips is difficult. Additionally, contact uncertainties including inaccuracies in the contact position control cannot be avoided. In contrast, rigid fingertips can apply considerable grasping forces and thus grasp heavy objects effectively, although this makes delicate grasping difficult. To maintain the benefits of the fluid fingertip while overcoming its disadvantages, the present study examines passively operable microgripper-embedded fluid fingertips. Our goal is to use the gripper to enhance the positioning accuracy and increase the grasping force by adding geometrical constraints to the existing mechanical constraints. Grasping tests showed that the gripper with the developed fingertips can grasp a wide variety of objects, both fragile and heavy.

References

References
1.
Maruyama
,
R.
,
Watanabe
,
T.
, and
Uchida
,
M.
,
2013
, “
Delicate Grasping by Robotic Gripper With Incompressible Fluid-Based Deformable Fingertips
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
5469
5474
.
2.
Watanabe
,
T.
,
Maruyama
,
R.
, and
Uchida
,
M.
,
2014
, “
Delicate Food Grasping by Robotic Gripper With Viscoelastic Fluid-Based Deformable Fingertips
,”
Trans. Control Mech. Syst.
,
3
(
3
), pp. 1–9.
3.
Adachi
,
R.
,
Fujihira
,
Y.
, and
Watanabe
,
T.
,
2015
, “
Identification of Danger State for Grasping Delicate Tofu With Fingertips Containing Viscoelastic Fluid
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
497
503
.
4.
Lovchik
,
C. S.
, and
Diftler
,
M. A.
,
1999
, “
The Robonaut Hand: A Dexterous Robot Hand for Space
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Detroit, MI, May 10–15, pp.
907
912
.
5.
Fukaya
,
N.
,
Toyama
,
S.
,
Asfour
,
T.
, and
Dillmann
,
R.
,
2000
, “
Design of the TUAT/Karlsruhe Humanoid Hand
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Takamatsu, Japan, Oct. 31–Nov. 5, pp.
1754
1759
.
6.
Butterfass
,
J.
,
Grebenstein
,
M.
,
Liu
,
H.
, and
Hirzinger
,
G.
,
2001
, “
DLR-Hand II: Next Generation of a Dexterous Robot Hand
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
109
114
.
7.
Ueda, J.
,
Ishida
,
Y.
,
Kondo
,
M.
, and
Ogasawara
,
T.
, 2005, “
Development of the NAIST-Hand With Vision-Based Tactile Fingertip Sensor
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
2332
2337
.
8.
Iwata
,
H.
, and
Sugano
,
S.
,
2009
, “
Design of Human Symbiotic Robot TWENDY-ONE
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
580
586
.
9.
Allen
,
D. L. A.
,
Lefrançois
,
S.
, and
Jobin
,
J. P.
,
2013
, “
A Gripper Having a Two Degree of Freedom Underactuated Mechanical Finger for Encompassing and Pinch Grasping
,” Robotiq Inc., Lévis, QC, Canada, Patent No.
WO2013075245 A1
.https://www.google.ch/patents/WO2013075245A1?cl=en
10.
Takeuchi
,
H.
, and
Watanabe
,
T.
,
2010
, “
Development of a Multi-Fingered Robot Hand With Softness-Changeable Skin Mechanism
,”
Joint 41st International Symposium on Robotics and Sixth German Conference on Robotics
(
ISR/ROBOTIK
), Munich, Germany, June 7–9, pp.
606
612
.http://ieeexplore.ieee.org/document/5756853/
11.
Hirose
,
S.
, and
Umetani
,
Y.
,
1978
, “
Development of Soft Gripper for the Versatile Robot Hand
,”
Mech. Mach. Theory
,
13
(
3
), pp.
351
359
.
12.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand: Design and Performance Evaluation
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
585
597
.
13.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), Vilamoura, Portugal, Oct. 7–12, pp.
736
752
.
14.
Grioli
,
G.
,
Catalano
,
M.
,
Silvestro
,
E.
,
Tono
,
S.
, and
Bicchi
,
A.
,
2012
, “
Adaptive Synergies: An Approach to the Design of Under-Actuated Robotic Hands
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), Vilamoura, Portugal, Oct. 7–12, pp.
1251
1256
.
15.
Catalano
,
M. G.
,
Grioli
,
G.
,
Farnioli
,
E.
,
Serio
,
A.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2014
, “
Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
768
782
.
16.
Piazza
,
C.
,
Santina
,
C. D.
,
Catalano
,
M.
,
Grioli
,
G.
,
Garabini
,
M.
, and
Bicchi
,
A.
,
2016
, “
SoftHand Pro-D: Matching Dynamic Content of Natural User Commands With Hand Embodiment for Enhanced Prosthesis Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
3516
3523
.
17.
Tavakoli
,
M.
, and
de Almeida
,
A. T.
,
2014
, “
Adaptive Under-Actuated Anthropomorphic Hand: ISR-SoftHand
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept. 14–18, pp.
1629
1634
.
18.
Tavakoli
,
M.
,
Batista
,
R.
, and
Sgrigna
,
L.
,
2015
, “
The UC Softhand: Light Weight Adaptive Bionic Hand With a Compact Twisted String Actuation System
,”
Actuators
,
5
(
1
), p.
1
.
19.
Ciocarlie
,
M.
,
Hicks
,
F. M.
,
Holmberg
,
R.
,
Hawke
,
J.
,
Schlicht
,
M.
,
Gee
,
J.
,
Stanford
,
S.
, and
Bahadur
,
R.
,
2014
, “
The Velo Gripper: A Versatile Single-Actuator Design for Enveloping, Parallel and Fingertip Grasps
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
753
767
.
20.
Backus
,
S. B.
, and
Dollar
,
A. M.
,
2016
, “
An Adaptive Three-Fingered Prismatic Gripper With Passive Rotational Joints
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
668
675
.
21.
Galloway
,
K. C.
,
Becker
,
K. P.
,
Phillips
,
B.
,
Kirby
,
J.
,
Licht
,
S.
,
Tchernov
,
D.
,
Wood
,
R. J.
, and
Gruber
,
D. F.
,
2016
, “
Soft Robotic Grippers for Biological Sampling on Deep Reefs
,”
Soft Rob.
,
3
(
1
), pp.
23
33
.
22.
Gaiser
,
I.
,
Schulz
,
S.
,
Kargov
,
A.
,
Klosek
,
H.
,
Bierbaum
,
A.
,
Pylatiuk
,
C.
,
Oberle
,
R.
,
Werner
,
T.
,
Asfour
,
T.
,
Bretthauer
,
G.
, and
Dillmann
,
R.
,
2008
, “
A New Anthropomorphic Robotic Hand
,”
Eighth IEEE-RAS International Conference on Humanoid Robots
(
Humanoids
), Daejeon, South Korea, Dec. 1–8, pp.
418
422
.
23.
Deimel
,
R.
, and
Brock
,
O.
,
2013
, “
A Compliant Hand Based on a Novel Pneumatic Actuator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
2047
2053
.
24.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
.
25.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem. Int. Ed.
,
50
(
8
), pp.
1890
1895
.
26.
Dameitry
,
A.
, and
Tsukagoshi
,
H.
,
2016
, “
Lightweight Underactuated Pneumatic Fingers Capable of Grasping Various Objects
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
2009
2014
.
27.
Stokes
,
A. A.
,
Shepherd
,
R. F.
,
Morin
,
S. A.
,
Ilievski
,
F.
, and
Whitesides
,
G. M.
,
2014
, “
A Hybrid Combining Hard and Soft Robots
,”
Soft Rob.
,
1
(
1
), pp.
70
74
.
28.
Kim
,
J.
,
Alspach
,
A.
, and
Yamane
,
K.
,
2015
, “
3D Printed Soft Skin for Safe Human-Robot Interaction
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
2419
2425
.
29.
Choi
,
H.
,
Koc
,
M.
, and
Koç
,
M.
,
2006
, “
Design and Feasibility Tests of a Flexible Gripper Based on Inflatable Rubber Pockets
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1350
1361
.
30.
Shepherd
,
R. F.
,
Stokes
,
A. A.
,
Nunes
,
R. M. D.
, and
Whitesides
,
G. M.
,
2013
, “
Soft Machines That Are Resistant to Puncture and That Self Seal
,”
Adv. Mater.
,
25
(
46
), pp.
6709
6713
.
31.
Homberg
,
B. S.
,
Katzschmann
,
R. K.
,
Dogar
,
M. R.
, and
Rus
,
D.
,
2015
, “
Haptic Identification of Objects Using a Modular Soft Robotic Gripper
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
1698
1705
.
32.
Schmidt
,
I.
,
1978
, “
Flexible Molding Jaws for Grippers
,”
Ind. Rob.
,
5
(1), pp.
24
26
.
33.
Perovskii
,
A. P.
,
1980
, “
Universal Grippers for Industrial Robots
,”
Russ. Eng. J.
,
60
, pp.
9
11
.
34.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
J.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
,
Lipson
,
H.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
Proc. Natl. Acad. Sci.
,
107
(
44
), pp.
18809
18814
.
35.
Amend
,
J. R.
,
Brown
,
E.
,
Rodenberg
,
N.
,
Jaeger
,
H. M.
, and
Lipson
,
H.
,
2012
, “
A Positive Pressure Universal Gripper Based on the Jamming of Granular Material
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
341
350
.
36.
Pettersson
,
A.
,
Davis
,
S.
,
Gray
,
J. O. O.
,
Dodd
,
T. J. J.
, and
Ohlsson
,
T.
,
2010
, “
Design of a Magnetorheological Robot Gripper for Handling of Delicate Food Products With Varying Shapes
,”
J. Food Eng.
,
98
(
3
), pp.
332
338
.
37.
Shimoga
,
K. B.
, and
Goldenberg
,
A. A.
,
1996
, “
Soft Robotic Fingertips—Part I: A Comparison of Construction Materials
,”
Int. J. Rob. Res.
,
15
(
4
), pp.
320
334
.
38.
Bullock
,
I. M.
,
Guertler
,
C.
, and
Dollar
,
A. M.
,
2015
, “
Patterned Compliance in Robotic Finger Pads for Versatile Surface Usage in Dexterous Manipulation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
2574
2579
.
39.
Tiezzi
,
P.
,
Kao
,
I.
, and
Vassura
,
G.
,
2007
, “
Effect of Layer Compliance on Frictional Behavior of Soft Robotic Fingers
,”
Adv. Rob.
,
21
(
14
), pp.
1653
1670
.
40.
Fujihira
,
Y.
,
Harada
,
K.
,
Tsuji
,
T.
, and
Watanabe
,
T.
,
2015
, “
Experimental Investigation of Effect of Fingertip Stiffness on Resistible Force in Grasping
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
4334
4340
.
41.
Watanabe
,
T.
, and
Fujihira
,
Y.
,
2014
, “
Experimental Investigation of Effect of Fingertip Stiffness on Friction While Grasping an Object
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
889
894
.
42.
Kawachi
,
M.
, 2017, “AIST Japanese Hand Data,” National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan, accessed Oct. 24, 2017, https://www.dh.aist.go.jp/database/
43.
STRATASYS
, 2014, “ABSplus-P430,” STRATASYS, Eden Prairie, MN, accessed Oct. 24, 2017, http://usglobalimages.stratasys.com/Main/Files/Material_Spec_Sheets/MSS_FDM_ABSplusP430.pdf
You do not currently have access to this content.