Principles from origami art are applied in the design of mechanisms and robotics increasingly frequent. A large part of the application driven research of these origami-like mechanisms focuses on devices where the creases (hinge lines) are actuated and the facets are constructed as stiff elements. In this paper, a design tool is proposed in which hinge lines with torsional stiffness and flexible facets are used to design passive, instead of active mechanisms. The design tool is an extension of a model of a single vertex compliant facet origami mechanism (SV-COFOM) and is used to approximate a desired moment curve by optimizing the design variables of the mechanism. Three example designs are presented: a constant moment joint (CMJ), a gravity compensating joint (GCJ) and a zero moment joint (ZMJ). The CMJ design has been evaluated experimentally, resulting in a root-mean-squared error (RMSE) of 6.4 × 10−2 N·m on a constant moment value of 0.39 N·m. This indicates that the design tool is suitable for a course estimation of the moment curve of the SV-COFOM in early stages of a design process.

References

References
1.
Lee
,
D.-Y.
,
Kim
,
J.-S.
,
Kim
,
S.-R.
,
Park
,
J.-J.
, and
Cho
,
K.-J.
,
2013
, “
Design of Deformable-Wheeled Robot Based on Origami Structure With Shape Memory Alloy Coil Spring
,”
Tenth International Conference on Ubiquitous Robots and Ambient Intelligence
(
URAI
), Jeju, South Korea, Oct. 30–Nov. 2, p. 120.
2.
Edmondson
,
B. J.
,
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Bateman
,
T. C.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
ASME
Paper No. SMASIS2013-3299.
3.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
4.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2011
, “
Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
4608
4613
.
5.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak
,
R. J.
, Jr.
, and
Lagoudas
,
D. C.
,
2014
, “
Origami-Inspired Active Structures: A Synthesis and Review
,”
Smart Mater. Struct.
,
23
(
9
), p.
094001
.
6.
Rommers
,
J.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Pseudo-Rigid-Body Modeling of a Single Vertex Compliant-Facet Origami Mechanism
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031009
.
7.
Qiu
,
C.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Repelling-Screw Based Force Analysis of Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031001
.
8.
Yasuda
,
H.
,
Chen
,
Z.
, and
Yang
,
J.
,
2016
, “
Multitransformable Leaf-Out Origami With Bistable Behavior
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031013
.
9.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
10.
Dai
,
J. S.
, and
Cannella
,
F.
,
2008
, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022305
.
11.
Qiu
,
C.
,
Aminzadeh
,
V.
, and
Dai
,
J. S.
,
2013
, “
Kinematic and Stiffness Analysis of an Origami-Type Carton
,”
ASME
Paper No. DETC2013-12343.
12.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, Hoboken, NJ.
13.
Herder
,
J. L.
, and
Van Den Berg
,
F. P. A.
,
2000
, “
Statically Balanced Compliant Mechanisms (SBCMS), an Example and Prospects
,”
Design Engineering Technical Conferences and Computer in Engineering Conference
, Paper No. DETC2000/MECH-14144.
You do not currently have access to this content.