This paper presents a design procedure for a two degree-of-freedom (DOF) translational parallel manipulator, named IRSBot-2. This design procedure aims at determining the optimal design parameters of the IRSBot-2 such that the robot can reach a velocity equal to 6 m/s, an acceleration up to 20 G, and a multidirectional repeatability up to 20 μm throughout its operational workspace. Besides, contrary to its counterparts, the stiffness of the IRSBot-2 should be very high along the normal to the plane of motion of its moving platform. A semi-industrial prototype of the IRSBot-2 has been realized based on the obtained optimum design parameters. This prototype and its main components are described in the paper. Its accuracy, repeatability, elasto-static performance, dynamic performance, and elasto-dynamic performance have been measured and analyzed as well. It turns out that the IRSBot-2 has globally reached the prescribed specifications and is a good candidate to perform very fast and accurate pick-and-place operations.

References

References
1.
Clavel
,
R.
,
1990
, “
Device for the Movement and Positioning of an Element in Space
,” Sogeva S.A., Montreuil, France, U.S. Patent No.
4976582
.
2.
Caro
,
S.
,
Khan
,
W. A.
,
Pasini
,
D.
, and
Angeles
,
J.
,
2010
, “
The Rule-Based Conceptual Design of the Architecture of Serial Schönflies-Motion Generators
,”
Mech. Mach. Theory
,
45
(
2
), pp.
251
260
.
3.
Angeles
,
J.
,
Caro
,
S.
,
Khan
,
W.
, and
Morozov
,
A.
,
2006
, “
Kinetostatic Design of an Innovative Schonflies-Motion Generator
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
7
), pp.
935
943
.
4.
Krut
,
S.
,
Nabat
,
V.
,
Company
,
O.
, and
Pierrot
,
F.
,
2004
, “
A High-Speed Parallel Robot for Scara Motions
,”
IEEE International Conference in Robotics and Automation
(
ICRA
), New Orleans, LA, Apr. 26–May 1, pp.
4109
4115
.
5.
Nabat
,
V.
,
Pierrot
,
F.
,
de la O Rodriguez Mijangos
,
M.
,
Azcoita Arteche
,
J. M.
,
Bueno Zabalo
,
R.
,
Company
,
O.
, and
Florentino Perez De Armentia
,
K.
,
2007
, “
High-Speed Parallel Robot With Four Degrees of Freedom
,” Fundacion Fatronik, Spain, U.S. Patent No.
US7735390 B2
.
6.
Liu
,
X.
, and
Kim
,
J.
,
2002
, “
Two Novel Parallel Mechanisms With Less Than Six Degrees of Freedom and the Applications
,”
Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
, Quebec City, QC, Canada, Oct. 3–4, pp.
172
177
.
7.
Liu
,
X.-J.
,
Wang
,
J.
, and
Pritschow
,
G.
,
2006
, “
Kinematics, Singularity and Workspace of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
2
), pp.
145
169
.
8.
Liu
,
X.-J.
,
Wang
,
J.
, and
Pritschow
,
G.
,
2006
, “
Performance Atlases and Optimum Design of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
2
), pp.
119
144
.
9.
Hesselbach
,
J.
,
Helm
,
M.
, and
Soetebier
,
S.
,
2002
, “
Connecting Assembly Modes for Workspace Enlargement
,”
Advances in Robot Kinematics
, Kluwer Academic Publishers, Norwell, MA, pp. 347–356.
10.
Brogardh
,
T.
,
2001
, “
Device for Relative Movement of Two Elements
,” ABB Group, Zürich, Switzerland, U.S. Patent No.
6301988
.
11.
Huang
,
T.
,
Li
,
M.
,
Li
,
Z.
,
Chetwynd
,
D.
, and
Whitehouse
,
D.
,
2003
, “
Planar Parallel Robot Mechanism With Two Translational Degrees of Freedom
,” Patent No.
WO 03055653 A1
.
12.
Germain
,
C.
,
Briot
,
S.
,
Glazunov
,
V.
,
Caro
,
S.
, and
Wenger
,
P.
,
2011
, “
IRSBOT-2: A Novel Two-DOF Parallel Robot for High-Speed Operations
,”
ASME
Paper No. DETC2011-47564.
13.
Pierrot
,
F.
,
Krut
,
S.
,
Company
,
O.
,
Nabat
,
V.
,
Baradat
,
C.
, and
Saenz Fernandez
,
A.
,
2009
, “
Two Degree-of-Freedom Parallel Manipulator
,” Fundacion Fatronik, Spain, Patent No.
WO 2009/089916 A1
.
14.
Germain
,
C.
,
Caro
,
S.
,
Briot
,
S.
, and
Wenger
,
P.
,
2013
, “
Optimal Design of the IRSBot-2 Based on an Optimized Test Trajectory
,”
ASME
Paper No. DETC2013-13037.
15.
Germain
,
C.
,
Caro
,
S.
,
Briot
,
S.
, and
Wenger
,
P.
,
2013
, “
Singularity-Free Design of the Translational Parallel Manipulator IRSBot-2
,”
Mech. Mach. Theory
,
64
, pp.
262
285
.
16.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
17.
Zlatanov
,
D.
,
Bonev
,
I.
, and
Gosselin
,
C.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11–15, pp. 496–502.
18.
Briot
,
S.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2010
, “
Optimal Technology-Oriented Design of Parallel Robots for High-Speed Machining Applications
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
1155
1161
.
19.
Merlet
,
J.
,
2006
,
Parallel Robots
,
2nd ed.
,
Springer
, Dordrecht, The Netherlands.
20.
Briot
,
S.
,
Glazunov
,
V.
, and
Arakelian
,
V.
,
2013
, “
Investigation on the Effort Transmission in Planar Parallel Manipulators
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011011
.
21.
Germain
,
C.
,
2013
, “
Conception d’un robot parallèle à deux degrés de liberté pour des opérations de prise et de dépose
,” Ph.D. thesis, Ecole Centrale Nantes, Nantes, France.
22.
Germain
,
C.
,
Briot
,
S.
,
Caro
,
S.
, and
Wenger
,
P.
, 2015, “
Natural Frequency Computation of Parallel Robots
,”
ASME J. Comput. Nonlin. Dyn.
,
10
(2), p. 021004.
23.
Deb
,
K.
,
Agrawal
,
S.
,
Pratab
,
A.
, and
Meyarivan
,
T.
,
2000
, “
A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II
,” Parallel Problem Solving From Nature-PPSN VI (Lecture Notes in Computer Science), Vol.
1917
,
M.
Schoenauer
,
K.
Deb
,
G.
Rudolph
,
Y.
Xin
,
E.
Lutton
,
J. J.
Merelo
, and
S.
Hans-Paul
, eds., Springer-Verlag, Berlin, pp.
849
858
.
24.
Germain
,
C.
,
Briot
,
S.
,
Caro
,
S.
,
Izard
,
J.
, and
Baradat
,
C.
,
2014
, “
Task-Oriented Design of a High-Speed Parallel Robot for Pick-and-Place Operations
,” Task-Based Optimal Design of Robots (
ICRA 2014 WS
), Hong Kong, China, May 31–June 7.
25.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling, Identification and Control of Robots
,
Hermes Penton
,
London
.
26.
Hollerbach
,
J.
,
Khalil
,
W.
, and
Gautier
,
M.
,
2008
, “
Model Identification
,”
Handbook of Robotics
,
Springer-Verlag
,
Berlin
, pp.
321
344
.
27.
Wu
,
Y.
,
Klimchik
,
A.
,
Caro
,
S.
,
Furet
,
B.
, and
Pashkevich
,
A.
,
2015
, “
Geometric Calibration of Industrial Robots Using Enhanced Partial Pose Measurements
,”
Rob. Comput. Integr. Manuf.
,
35
, pp.
151
168
.
28.
Chaumette
,
F.
, and
Huchinson
,
S.
,
2008
, “
Visual Servoing and Visual Tracking
,”
Handbook of Robotics
,
Springer-Verlag
, Berlin, Chap. 24.
29.
Chaumette
,
F.
, and
Hutchinson
,
S.
,
2006
, “
Visual Servo Control—Part I: Basic Approaches
,”
IEEE Rob. Autom. Mag.
,
13
(
4
), pp.
82
90
.
30.
Chaumette
,
F.
, and
Hutchinson
,
S.
,
2007
, “
Visual Servo Control—Part II: Advanced Approaches
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
109
118
.
31.
Honegger
,
M.
,
Codourey
,
A.
, and
Burdet
,
E.
,
1997
, “
Adaptive Control of the Hexaglide, a 6DOF Parallel Manipulator
,” IEEE International Conference on Robotics and Automation (
ICRA
), Alburquerque, NM, Apr. 20–25, pp.
543
548
.
32.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1988
, “
Preshaping Command Inputs to Reduce System Vibration
,” Massachusetts Institute of Technology, Cambridge, MA, A.I. Memo No.
1027
.
33.
Singhose
,
W. E.
,
Singer
,
N. C.
, and
Seering
,
W. P.
,
1994
, “
Design and Implementation of Time-Optimal Negative Input Shapers
,”
International Mechanical Engineering Congress and Exposition
, Chicago, IL, pp. 151–157.
34.
Douat
,
L.
,
Queinnec
,
I.
,
Garcia
,
G.
,
Michelin
,
M.
, and
Pierrot
,
F.
,
2011
, “
H-∞ Control Applied to the Vibration Minimization of the Parallel Robot Par2
,” IEEE International Conference on Control Applications (
CCA
), Denver, CO, Sept. 28–30, pp. 947–952.
You do not currently have access to this content.