This paper presents the design, simulation, fabrication, and testing processes of a new microelectromechanical systems (MEMS) microgripper, which integrates an electrostatic actuator and a capacitive force sensor. One advantage of the presented gripper is that the gripping force and interaction force in two orthogonal directions can be, respectively, detected by a single force sensor. The whole gripper structure consists of the left actuating part and right sensing part. It owns a simple structure and compact footprint. The actuator and sensor are fixed and linearly guided by four leaf flexures, respectively. The left arm of the gripper is driven through a lever amplification mechanism. By this structure, the displacement from the electrostatic actuator is transmitted and enlarged at the gripper tip. The right arm of the gripper is designed to detect the gripping and interaction forces using a capacitive sensor. The MEMS gripper is manufactured by SOIMUMPs process. The performance of the designed gripper is verified by conducting finite element analysis (FEA) simulation and experimental studies. Moreover, the demonstration of biocellulose gripping confirms the feasibility of the developed gripper device.

References

References
1.
Chowdhury
,
S.
,
Thakur
,
A.
,
Wang
,
C.
,
Svec
,
P.
,
Losert
,
W.
, and
Gupta
,
S. K.
,
2014
, “
Automated Manipulation of Biological Cells Using Gripper Formations Controlled by Optical Tweezers
,”
IEEE Trans. Autom. Sci. Eng.
,
11
(
2
), pp.
338
347
.
2.
Dechev
,
N.
,
Cleghorn
,
W. L.
, and
Mills
,
J. K.
,
2004
, “
Microassembly of 3-D Microstructures Using a Compliant, Passive Microgripper
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
176
189
.
3.
Ansel
,
Y.
,
Schmitz
,
F.
,
Kunz
,
S.
,
Gruber
,
H. P.
, and
Popovic
,
G.
,
2002
, “
Development of Tools for Handling and Assembling Microcomponents
,”
J. Micromech. Microeng.
,
12
(
4
), pp.
430
437
.
4.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
5.
Zhang
,
R.
,
Chu
,
J.
,
Wang
,
H.
, and
Chen
,
Z.
,
2013
, “
A Multipurpose Electrothermal Microgripper for Biological Micro-Manipulation
,”
Microsyst. Technol.
,
19
(
1
), pp.
89
97
.
6.
Xu
,
Q.
,
2013
, “
Adaptive Discrete-Time Sliding Mode Impedance Control of a Piezoelectric Microgripper
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
663
673
.
7.
AbuZaiter
,
A.
,
Nafea
,
M.
, and
Ali
,
M. S. M.
,
2016
, “
Development of a Shape-Memory-Alloy Micromanipulator Based on Integrated Bimorph Microactuators
,”
Mechatronics
,
38
, pp.
16
28
.
8.
Piriyanont
,
B.
, and
Moheimani
,
S. O. R.
,
2014
, “
MEMS Rotary Microgripper With Integrated Electrothermal Force Sensor
,”
J. Microelectromech. Syst.
,
23
(
6
), pp.
1249
1251
.
9.
Kim
,
D. H.
,
Lee
,
M. G.
,
Kim
,
B.
, and
Sun
,
Y.
,
2005
, “
A Superelastic Alloy Microgripper With Embedded Electromagnetic Actuators and Piezoelectric Force Sensors: A Numerical and Experimental Study
,”
Smart Mater. Struct.
,
14
(
6
), pp.
1265
1272
.
10.
Yang
,
S.
, and
Xu
,
Q.
,
2016
, “
Design of a Microelectromechanical Systems Microgripper With Integrated Electrothermal Actuator and Force Sensor
,”
Int. J. Adv. Robot. Syst.
,
13
(
5
), p. 172988141666337.
11.
Molhave
,
K.
, and
Hansen
,
O.
,
2005
, “
Electro-Thermally Actuated Microgrippers With Integrated Force-Feedback
,”
J. Micromech. Microeng.
,
15
(
6
), pp.
1265
1270
.
12.
Khan
,
F.
,
Bazaz
,
S. A.
, and
Sohail
,
M.
,
2010
, “
Design, Implementation and Testing of Electrostatic SOIMUMPs Based Microgripper
,”
Microsyst. Technol.
,
16
(
11
), pp.
1957
1965
.
13.
Xu
,
Q.
,
2015
, “
Design, Fabrication, and Testing of an MEMS Microgripper With Dual-Axis Force Sensor
,”
IEEE Sens. J.
,
15
(
10
), pp.
6017
6026
.
14.
Solano
,
B.
, and
Wood
,
D.
,
2007
, “
Design and Testing of a Polymeric Microgripper for Cell Manipulation
,”
Microelectro. Eng.
,
84
(
5
), pp.
1219
1222
.
15.
Chronis
,
N.
, and
Lee
,
L. P.
,
2005
, “
Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution
,”
J. Microelectromech. Syst.
,
14
(
4
), pp.
857
863
.
16.
Estevez
,
P.
,
Bank
,
J. M.
,
Porta
,
M.
,
Wei
,
J.
,
Sarro
,
P. M.
,
Tichem
,
M.
, and
Staufer
,
U.
,
2012
, “
6 DOF Force and Torque Sensor for Micro-Manipulation Applications
,”
Sens. Actuators A
,
186
, pp.
86
93
.
17.
Kim
,
K.
,
Liu
,
X.
,
Zhang
,
Y.
, and
Sun
,
Y.
,
2008
, “
Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper With Two-Axis Force Feedback
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055013
.
18.
Wei
,
J.
,
Porta
,
M.
,
Tichem
,
M.
, and
Sarro
,
P. M.
,
2009
, “
A Contact Position Detection and Interaction Force Monitoring Sensor for Micro-Assembly Applications
,”
15th International Conference on Solid-State Sensors, Actuators Microsystems
(
TRANSDUCERS
), Denver, CO, June 21–25, pp.
2385
2388
.
19.
Beyeler
,
F.
,
Neild
,
A.
,
Oberti
,
S.
,
Bell
,
D. J.
,
Sun
,
Y.
,
Dual
,
J.
, and
Nelson
,
B. J.
,
2007
, “
Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field
,”
J. Microelectromech. Syst.
,
16
(
1
), pp.
7
15
.
20.
Krijnen
,
B.
, and
Brouwer
,
D. M.
,
2014
, “
Flexures for Large Stroke Electrostatic Actuation in MEMS
,”
J. Micromech. Microeng.
,
24
(
1
), p.
015006
.
21.
Grade
,
J. D.
,
Jerman
,
H.
, and
Kenny
,
T. W.
,
2003
, “
Design of Large Deflection Electrostatic Actuators
,”
J. Microelectromech. Syst.
,
12
(
3
), pp.
335
343
.
22.
Ravi Sankar
,
A.
,
Das
,
S.
, and
Lahiri
,
S. K.
,
2009
, “
Cross-Axis Sensitivity Reduction of a Silicon MEMS Piezoresistive Accelerometer
,”
Microsyst. Technol.
,
15
(
4
), pp.
511
518
.
23.
Qu
,
J.
,
Zhang
,
W.
,
Jung
,
A.
,
Sliva
,
S.
, and
Liu
,
X.
,
2015
, “
A MEMS Microgripper With Two-Axis Actuators and Force Sensors for Microscale Mechanical Characterization of Soft Materials
,”
IEEE International Conference on Automation Science and Engineering
(
CASE
), Gothenburg, Sweden, Aug. 24–28, pp.
1620
1625
.
You do not currently have access to this content.