For under-constrained and redundant parallel manipulators, the actuator inputs are studied with bounded variations in parameters and data. Problem is formulated within the context of force analysis. Discrete and analytical methods for interval linear systems are presented, categorized, and implemented to identify the solution set, as well as the minimum 2-norm least-squares solution set. The notions of parameter dependency and solution subsets are considered. The hyperplanes that bound the solution in each orthant characterize the solution set of manipulators. While the parameterized form of the interval entries of the Jacobian matrix and wrench produce the minimum 2-norm least-squares solution for the under-constrained and over-constrained systems of real matrices and vectors within the interval Jacobian matrix and wrench vector, respectively. Example manipulators are used to present the application of methods for identifying the solution and minimum norm solution sets for actuator forces/torques.

References

References
1.
Hansen
,
E.
,
1992
,
Global Optimization Using Interval Analysis
,
1st ed.
,
Marcel Dekker
,
New York
.
2.
Moore
,
R.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
SIAM
,
Philadelphia, PA
.
3.
Kearfott
,
R. B.
,
1996
,
Rigorous Global Search: Continuous Problems
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
4.
Rump
,
S.
,
1983
,
Solving Algebraic Problems With High Accuracy, A New Approach in Scientific Computation
,
U.
Kulisch
, and
W.
Miranker
, eds.,
Academic Press
,
San Diego, CA
, pp.
51
120
.
5.
Rohn
,
J.
,
1996
, “
Enclosing Solutions of Overdetermined Systems of Linear Interval Equations
,”
Reliab. Comput.
,
2
(
2
), pp.
167
171
.
6.
Bentbib
,
A. H.
,
2002
, “
Solving the Full Rank Interval Least Squares Problem
,”
Appl. Numer. Math.
,
41
(
2
), pp.
283
294
.
7.
Hansen
,
E.
, and
Walster
,
G. W.
,
2006
, “
Solving Overdetermined Systems of Interval Linear Equations
,”
Reliab. Comput.
,
12
(
3
), pp.
239
243
.
8.
Hladík
,
M.
,
2012
, “
Enclosures for the Solution Set of Parametric Interval Linear Systems
,”
Int. J. Appl. Math. Comput. Sci.
,
22
(
3
), pp.
561
574
.
9.
Horáček
,
J.
, and
Hladík
,
M.
,
2013
, “
Subsquares Approach—A Simple Scheme for Solving Overdetermined Interval Linear Systems
,”
Parallel Processing and Applied Mathematics
,
R.
Wyrzykowski
, et al., eds.,
Springer
,
Berlin
, pp.
613
622
.
10.
Notash
,
L.
,
2015
, “
Analytical Methods for Solution Sets of Interval Wrench
,”
ASME
Paper No. DETC2015-47575.
11.
Hartfiel
,
D.
,
1980
, “
Concerning the Solution Set of Ax = b Where P ≤ A ≤ Q and p ≤ b ≤ q
,”
Numer. Math.
,
35
(
3
), pp.
355
359
.
12.
Popova
,
E. D.
, and
Krämer
,
W.
,
2008
, “
Visualizing Parametric Solution Sets
,”
BIT Numer. Math.
,
48
(
1
), pp.
95
115
.
13.
Nazari
,
V.
, and
Notash
,
L.
,
2016
, “
Motion Analysis of Manipulators With Uncertainty in Kinematic Parameters
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021014
.
14.
Notash
,
L.
,
2012
, “
A Methodology for Actuator Failure Recovery in Parallel Manipulators
,”
Mech. Mach. Theory
,
46
(
4
), pp.
454
465
.
15.
Fieldler
,
M.
,
Nedoma
,
J.
,
Ramik
,
J.
, and
Rohn
,
J.
,
2006
,
Linear Optimization Problems With Inexact Data
,
Springer
,
New York
.
16.
Notash
,
L.
,
2016
, “
On the Solution Set for Positive Wire Tension With Uncertainty in Wire-Actuated Parallel Manipulators
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
044506
.
17.
Notash
,
L.
,
2017
, “
Wrench Accuracy for Parallel Manipulators and Interval Dependency
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011008
.
18.
Oettli
,
W.
,
1965
, “
On the Solution Set of a Linear System With Inaccurate Coefficients
,”
SIAM J. Numer. Anal., Ser. B
,
2
(
1
), pp.
115
118
.
19.
Notash
,
L.
,
2017
, “
Solutions of Interval Systems for Under-Constrained and Redundant Parallel Manipulators
,”
ASME
Paper No. DETC2017-67091.
20.
Rump
,
S. M.
,
1999
,
INTLAB—INTerval LABoratory, Developments in Reliable Computing
,
T.
Csendes
, ed.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
77
104
.
You do not currently have access to this content.