The paper presents a theory of vibratory locomotion, a prototype, and the results of experiments on mini robot, which moves as a result of inertial excitation provided by two electric motors. The robot is equipped with elastic bristles which are in contact with the supporting surface. Vibration of the robot generates the friction force which can push the robot forward or backward. The paper presents a novel model of interaction between the bristles and the supporting surface. The friction force (its magnitude and sense) is defined as a function of the robot velocity and the robot's vibrations. The analysis is done for a constant coefficient of friction and a smooth surface. Depending on the motors' speed, one may obtain a rectilinear or a curvilinear motion, without jumping or losing contact with the substrate. The results of the simulation show which way the robot moves, its mean velocity of locomotion, change of the slipping velocity of the bristles and its influence on the normal and the friction force. A prototype was built and experiments were performed with it.

References

References
1.
Alexander
,
R. N.
,
2006
,
Principles of Animal Locomotion
,
Princeton University Press
,
Princeton, NJ
.
2.
Taylor
,
G. K.
,
Triantafyllou
,
M. S.
, and
Trapea
,
C.
, eds.,
2010
,
Animal Locomotion
,
Springer-Verlag
, Berlin.
3.
Aoshima
,
S.
,
Tsujimura
,
T.
, and
Yabuta
,
T.
,
1993
, “
A Minature Mobile Robot Using Piezo Vibration for Mobility in a Tine Tube
,”
ASME J. Dyn. Sys., Meas., Control
,
115
(2A), pp.
270
278
.
4.
Gmiterko
,
A.
,
Kelemen
,
M.
, and
Mlynkowa
,
Z.
,
2001
, “
In Pipe-Micromachine Based on the Principle of the Bristle Directional Friction Force
,”
Third International Conference Mechatronics, Robotics and Biomechanics, Trest
, Czech Republic, pp.
95
102
.
5.
Lim
,
J.
,
Park
,
H.
,
An
,
J.
,
Yeh-Sun
,
H.
,
Kim
,
B.
, and
Byung-Ju
,
Y.
,
2008
, “
One Pneumatic Line Based Inchworm-Like Micro Robot for Half-Inch Pipe Inspection
,”
Mechatronics
,
18
(
7
), pp.
315
322
.
6.
Liu
,
Q.
,
Ren
,
T.
, and
Chen
,
Y.
,
2013
, “
Characteristic Analysis of a Novel In-Pipe Driving Robot
,”
Mechatronics
,
23
(
4
), pp.
419
428
.
7.
Mištinas
,
V.
, and
Spruogis
,
B.
,
2002
, “
Development of Pipe Crawling Robots With Vibratory Drives and Investigation of Their Kinematic Parameters
,”
Transport
,
17
(
5
), pp.
171
176
.
8.
Jatsun
,
S. F.
,
Zimmerman
,
K.
,
Zeidis
,
I.
, and
Jatsun
,
A. S.
,
2007
, “
Vibration Driven Robots for in Pipe Inspection
,”
International Conference on Mechatronics
(
ICM
), Changchun, China, May 8–10, pp. 1–5.
9.
Stepanenko
,
D. A.
,
Minchenya
,
V. T.
,
Asimov
,
R. M.
, and
Zimmermann
,
K.
,
2012
, “
Possibility of Application of Small-Size Robots With Vibratory Piezoelectric Actuators for Inspection of Physical State of Surfaces
,”
AIP Conf. Proceed.
,
1433
, pp. 685–688.
10.
Ostertag
,
O.
,
Ostertagová
,
E.
,
Kelemen
,
M.
,
Kelemenová
,
T.
,
Buša
,
J.
, and
Virgala, I.
,
2014
, “
Miniature Mobile Bristled In-Pipe Machine
,”
Int. J. Adv. Rob. Syst.
,
11
(12), pp.
1
9
.
11.
Quick D.
, 2011, “
Festo Creates SmartBird Flying Robotic Seagull
,” New Atlas, Robotics, Alexandria, Egypt, accessed Sept. 19, 2017, http://www.gizmag.com/smartbird-robotic-seagull/18228/
12.
Coxworth B.
,
2012
, “
First of Four Autonomous Wave Glider Robots Successfully Crosses Pacific Ocean
,” New Atlas, Robotics, Alexandria, Egypt, accessed Sept. 19, 2017, http://www.gizmag.com/wave-glider-arrives-australia/25316/
13.
Raibert
,
I. H.
, and
Brown
,
H. B.
,
1984
, “
Experiments in Balance With a 2D One-Legged Hopping Machine
,”
ASME J. Dyn. Syst. Meas. Control
,
106
(
1
), pp.
75
81
.
14.
Chemousko
,
F. L.
,
2003
, “
Snake-Like Locomotion of Multi Mechanisms
,”
J. Vib. Control
,
9
(
1
), pp.
235
256
.
15.
Sugiyama
,
Y.
, and
Hirai
,
S.
,
2003
, “
Crawling and Jumping of Deformable Soft Robot
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Sendai, Japan, Sept. 28–Oct. 2, pp.
276
3281
.
16.
Kim
,
B.
,
Lee
,
M.
,
Lee, Y. P.
,
Kim, Y. I.
, and
Lee, G. H.
,
2006
, “
An Earthworm-Like Micro Robot Using Shape Memory Alloy Actuator
,”
Sens. Actuators A, Phys.
,
125
(
2
), pp.
429
437
.
17.
Chen
,
L.
,
Ma
,
S.
,
Wang
,
Y.
, and
Duan, D. P.
,
2007
, “
Design and Modelling of a Snake Robot in Traveling Wave Locomotion
,”
Mech. Mach. Theory
,
42
(
12
), pp.
1632
1642
.
18.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kierb, W. M.
,
Ian, D.
, and
Walker, I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.
19.
Omori
,
H.
,
Hayakawa
,
T.
, and
Nakamura
,
T.
,
2008
, “
Locomotion and Turning Patterns of a Peristaltic Crawling Earthworm Robot Composed of Flexible Units
,”
International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sept. 22–26, pp.
1630
1635
.
20.
Lu
,
H.
,
Zhu
,
J.
,
Lin
,
Z.
, and
Guo
,
Y.
,
2009
, “
An Inchworm Mobile Robot Using Electromagnetic Linear Actuator
,”
Mechatronics
,
19
(
7
), pp.
1116
1125
.
21.
Zhang
,
H. X.
,
Zhang
,
J. W.
, and
Wang
,
W.
,
2010
, “
From the Biological Model to a Small Climbing Caterpillar Robot
,”
Int. J. Adv. Mechatronic Syst.
,
2
(
1–2
), pp. 90–98.
22.
Lee
,
D.
,
Kim
,
S.
,
Park, Y.
, and
Wood, R.
,
2011
, “
Design of Centimeter-Scale Inchworm Robots With Bidirectional Claws
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp. 3197–3204.
23.
Boxerbaum
,
A. S.
,
Kendric
,
M.
,
Shaw
,
K. M.
,
Chiel
,
H. J.
, and
Quinn, R. D.
,
2012
, “
Continuous Wave Peristaltic Motion in a Robot
,”
Int. J. Rob. Res.
,
31
(
3
), pp.
302
318
.
24.
Seok
,
S.
,
Onal
,
C. D.
, Cho, K. J., Wood, R. J., and
Kim
,
S.
,
2012
, “
Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators
,”
IEEE/ASME Trans. Mechatronics
,
18
(
5
), pp.
1485
1497
.
25.
Li
,
F.
,
Liu
,
W.
,
Fu
,
X.
,
Bonsignori
,
G.
,
Scarfogliero
,
U.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2012
, “
Jumping Like an Insect: Design and Dynamic Optimization of a Jumping Mini Robot Based on Bio-Mimetic Inspiration
,”
Mechatronics
,
22
(
2
), pp.
167
176
.
26.
Zhang
,
J.
,
Song
,
G.
,
Li
,
Y.
,
Qiao
,
G.
,
Song
,
A.
, and
Wang
,
A.
,
2013
, “
A Bio-Inspired Jumping Robot: Modeling, Simulation, Design, and Experimental Results
,”
Mechatronics
,
23
(
8
), pp.
1123
1140
.
27.
Ioi
,
K.
,
1999
, “
A Mobile Micro-Robot Using Centrifugal Forces
,”
International Conference on Advanced Intelligent Mechatronics
(
AIM
), Atlanta, GA, Sept. 19–23, pp.
736
741
.
28.
Becker
,
F.
,
Lysenko
,
V.
,
Minchenya
,
V.
,
Zeidis
,
I.
, and
Zimmermann
,
K.
,
2006
, “
An Approach to the Dynamics of a Vibration-Driven Robot
,”
Romansy 19—Robot Design, Dynamics and Control
(CISM International Centre for Mechanical Sciences), Vol. 544, Springer, Vienna, Austria, pp.
299
308
.
29.
Majewski
,
T.
, and
Alejos
,
R.
,
2011
, “
Oscillatory Locomotion
,”
21st International Conference on Electronics, Communications and Computers
(
CONIELECOMP
), Puebla, Mexico, Feb. 28–Mar. 2, pp.
322
327
.
30.
Eigoli
,
K.
, and
Vossoughi
,
G. R.
,
2012
, “
Locomotion Modes of a Novel Piezo-Driven Microrobot: Analytical Modeling and Performance Evaluation
,”
Mech. Mach. Theory
,
52
, pp.
248
266
.
31.
DeSimone
,
A.
, and
Tatone
,
A.
,
2012
, “
Crawling Motility Through the Analysis of Model Locomotors: Two Case Studies
,”
Eur. Phys. J. E.
,
35
(
85
), pp.
1
8
.
32.
Becker
,
F.
,
Börner
,
S.
,
Lysenko
,
V.
,
Zeidis
,
I.
, and
Zimmermann
,
K.
,
2014
, “
On the Mechanics of Bristle-Bots-Modeling, Simulation and Experiments
,” International Symposium on Robotics (
ISR
), Munich, Germany, June 2–3, pp.
15
20
.
33.
Becker
,
F.
,
Börner
,
S.
,
Kästner
,
T.
,
Lysenko
,
V.
, and
Zeidis
,
I.
,
2014
, “
Spy Bristle Bot—A Vibration-Driven Robot for the Inspection of Pipelines
,”
58th Ilmenau Scientific Colloquium
, Ilmenau, Germany, Sept. 8–12, pp. 1–7.
34.
Majewski
,
T.
, and
Szwedowicz
,
D.
,
2014
, “
Behavior of the Robot With Vibratory Excitation
,”
Multibody Mechatronic Systems
(Mechanisms and Machine Science), Vol. 25, Springer, Cham, Switzerland, pp.
67
74
.
35.
Giomi
,
L.
,
Hawley-Weld
,
N.
, and
Mahadevan
,
L.
,
2013
, “
Swarming, Swirling and Stasis in Sequestered Bristle-Bots
,”
Proc. R. Soc. A
,
469
(
2151
), pp. 1–18.
36.
Cicconofri
,
G.
, and
DeSimone
,
A.
,
2015
, “
Motility of a Model Bristle-Bot: A Theoretical Analysis
,”
Int. J. Non-Linear Mech.
,
76
, pp.
233
239
.
37.
Wood
,
R. J.
,
2008
, “
The First Takeoff of a Biologically Inspired at-Scale Robotic Insect
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
1
7
.
38.
Chirarattananon
,
P.
,
Ma
,
K. Y.
, and
Wood
,
R. J.
,
2013
, “
Adaptive Control for Takeoff, Hovering, and Landing of a Robotic Fly
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp. 3808–3815.
39.
Ma
,
K. Y.
,
Chirarattananon
,
P.
, and
Wood
,
R. J.
,
2015
, “
Design and Fabrication of an Insect-Scale Flying Robot for Control Autonomy
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
1558
1564
.
40.
Majewski
,
T.
,
Szwedowicz
,
D.
, and
Majewski
,
M.
,
2016
, “
Possible Excitations for the Bristle Robots
,”
24th International Congress of Theoretical and Applied Mechanics
, Montreal, QC, Canada, Aug. 21–26, pp.
2973
2974
.
You do not currently have access to this content.