This paper proposes a two translational and two rotational (2T2R) four-degrees-of-freedom (DOF) parallel kinematic mechanism (PKM) designed as a knee rehabilitation and diagnosis mechatronics system. First, we establish why rehabilitation devices with 2T2R motion are required, and then, we review previously proposed parallel mechanisms with this type of motion. After that, we develop a novel proposal based on the analysis of each kinematic chain and the Grübler–Kutzbach criterion. Consequently, the proposal consists of a central limb with revolute-prismatic-universal (RPU) joints and three external limbs with universal-prismatic-spherical (UPS) joints. The Screw theory analysis verifies the required mobility of the mechanism. Also, closed-loop equations enable us to put forward the closed-form solution for the inverse-displacement model, and a numerical solution for the forward-displacement model. A comparison of the numerical results from five test trajectories and the solution obtained using a virtual prototype built in msc-adams shows that the kinematic model represents the mechanism's motion. The analysis of the forward-displacement problem highlights the fact that the limbs of the mechanism should be arranged asymmetrically. Moreover, the Screw theory makes it possible to obtain the Jacobian matrix which provides insights into the analysis of the mechanism's workspace. The results show that the proposed PKM can cope with the required diagnosis and rehabilitation task. The results provide the guidelines to build a first prototype of the mechanism which enables us to perform initial tests on the robot.

References

References
1.
Qian
,
Z.
, and
Bi
,
Z.
,
2015
, “
Recent Development of Rehabilitation Robots
,”
Adv. Mech. Eng.
,
7
(
2
), p.
563062
.
2.
Robertson
,
J.
,
Jarrassé
,
N.
, and
Roby-Brami
,
A.
,
2010
, “
Rehabilitation Robots: A Compliment to Virtual Reality
,”
Schedae
,
1
(
6
), pp.
77
94
.
3.
Meng
,
W.
,
Liu
,
Q.
,
Zhou
,
Z.
,
Ai
,
Q.
,
Sheng
,
B.
, and
Xie
,
S. S.
,
2015
, “
Recent Development of Mechanisms and Control Strategies for Robot-Assisted Lower Limb Rehabilitation
,”
Mechatronics
,
31
, pp.
132
145
.
4.
Jezernik
,
S.
,
Colombo
,
G.
,
Keller
,
T.
,
Frueh
,
H.
, and
Morari
,
M.
,
2003
, “
Robotic Orthosis Lokomat: A Rehabilitation and Research Tool
,”
Neuromodulation
,
6
(
2
), pp.
108
115
.
5.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E.
,
Ekkelenkamp
,
R.
,
Van Asseldonk
,
E. H.
, and
Van Der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.
6.
Freivogel
,
S.
,
Mehrholz
,
J.
,
Husak-Sotomayor
,
T.
, and
Schmalohr
,
D.
,
2008
, “
Gait Training With the Newly Developed ‘LokoHelp’-System is Feasible for Non-Ambulatory Patients After Stroke, Spinal Cord and Brain Injury—A Feasibility Study
,”
Brain Inj.
,
22
(
7–8
), pp.
625
632
.
7.
Díaz
,
I.
,
Gil
,
J. J.
, and
Sánchez
,
E.
,
2011
, “
Lower-Limb Robotic Rehabilitation: Literature Review and Challenges
,”
J. Rob.
,
2011
, p.
759764
.
8.
Riener
,
R.
,
Lunenburger
,
L.
,
Jezernik
,
S.
,
Anderschitz
,
M.
,
Colombo
,
G.
, and
Dietz
,
V.
,
2005
, “
Patient-Cooperative Strategies for Robot-Aided Treadmill Training: First Experimental Results
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
13
(
3
), pp.
380
394
.
9.
Hesse
,
S.
,
Uhlenbrock
,
D.
, and
Sarkodie-Gyan
,
T.
,
1999
, “
Gait Pattern of Severely Disabled Hemiparetic Subjects on a New Controlled Gait Trainer as Compared to Assisted Treadmill Walking With Partial Body Weight Support
,”
Clin. Rehabil.
,
13
(
5
), pp.
401
410
.
10.
Wu
,
J.
,
Gao
,
J.
,
Song
,
R.
,
Li
,
R.
,
Li
,
Y.
, and
Jiang
,
L.
,
2016
, “
The Design and Control of a 3DOF Lower Limb Rehabilitation Robot
,”
Mechatronics
,
33
, pp.
13
22
.
11.
Jia
,
X.
,
Che
,
J.
,
Liu
,
H.
,
Xiong
,
K.
, and
Huang
,
T.
,
2017
, “
Conceptual Design and Dimensional Synthesis of a Novel Parallel Mechanism for Lower-Limb Rehabilitation
,”
CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium
, pp.
1
12
.
12.
Schmidt
,
H.
,
Werner
,
C.
,
Bernhardt
,
R.
,
Hesse
,
S.
, and
Krüger
,
J.
,
2007
, “
Gait Rehabilitation Machines Based on Programmable Footplates
,”
J. Neuroeng. Rehabil.
,
4
(
1
), p.
2
.
13.
Jamwal
,
P. K.
,
Hussain
,
S.
, and
Xie
,
S. Q.
,
2015
, “
Review on Design and Control Aspects of Ankle Rehabilitation Robots
,”
Disability Rehabil.: Assistive Technol.
,
10
(
2
), pp.
93
101
.
14.
Rastegarpanah
,
A.
,
Saadat
,
M.
, and
Borboni
,
A.
,
2016
, “
Parallel Robot for Lower Limb Rehabilitation Exercises
,”
Appl. Bionics Biomech.
,
2016
, p.
8584735
.
15.
Vallés
,
M.
,
Cazalilla
,
J.
,
Valera
,
Á.
,
Mata
,
V.
,
Page
,
Á.
, and
Díaz-Rodríguez
,
M.
,
2015
, “
A 3-PRS Parallel Manipulator for Ankle Rehabilitation: Towards a Low-Cost Robotic Rehabilitation
,”
Robotica
,
35
(10), pp. 1939–1957.
16.
Valera
,
A.
,
Díaz-Rodríguez
,
M.
,
Valles
,
M.
,
Oliver
,
E.
,
Mata
,
V.
, and
Page
,
A.
,
2016
, “
Controller–Observer Design and Dynamic Parameter Identification for Model-Based Control of an Electromechanical Lower-Limb Rehabilitation System
,”
Int. J. Control
,
90
(
4
), pp.
702
714
.
17.
Mohan
,
S.
,
Mohanta
,
J.
,
Kurtenbach
,
S.
,
Paris
,
J.
,
Corves
,
B.
, and
Huesing
,
M.
,
2017
, “
Design, Development and Control of a 2PRP-2PPR Planar Parallel Manipulator for Lower Limb Rehabilitation Therapies
,”
Mech. Mach. Theory
,
112
, pp.
272
294
.
18.
Escamilla
,
R. F.
,
MacLeod
,
T. D.
,
Wilk
,
K. E.
,
Paulos
,
L.
, and
Andrews
,
J. R.
,
2012
, “
Cruciate Ligament Loading During Common Knee Rehabilitation Exercises
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
9
), pp.
670
680
.
19.
Colombet
,
P.
,
Jenny
,
J.
,
Menetrey
,
J.
,
Plaweski
,
S.
, and
Zaffagnini
,
S.
,
2012
, “
Current Concept in Rotational Laxity Control and Evaluation in ACL Reconstruction
,”
Orthop. Traumatol.: Surg. Res.
,
98
(
8
), pp.
S201
S210
.
20.
Alam
,
M.
,
Bull
,
A. M.
,
Thomas
,
R. D.
, and
Amis
,
A. A.
,
2013
, “
A Clinical Device for Measuring Internal-External Rotational Laxity of the Knee
,”
Am. J. Sports Med.
,
41
(
1
), pp.
87
94
.
21.
Höher
,
J.
,
Akoto
,
R.
,
Helm
,
P.
,
Shafizadeh
,
S.
,
Bouillon
,
B.
, and
Balke
,
M.
,
2015
, “
Rolimeter Measurements Are Suitable as Substitutes to Stress Radiographs in the Evaluation of Posterior Knee Laxity
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
23
(
4
), pp.
1107
1112
.
22.
Araujo-Gómez
,
P.
,
Díaz-Rodriguez
,
M.
,
Mata
,
V.
,
Valera
,
A.
, and
Page
,
A.
,
2016
, “
Design of a 3-UPS-RPU Parallel Robot for Knee Diagnosis and Rehabilitation
,”
21st CISM-IFToMM Symposium
, Udine, Italy, June 20–23, pp.
303
310
.
23.
Wiertsema
,
S.
,
Van Hooff
,
H.
,
Migchelsen
,
L.
, and
Steultjens
,
M.
,
2008
, “
Reliability of the KT1000 Arthrometer and the Lachman Test in Patients With an ACL Rupture
,”
Knee
,
15
(
2
), pp.
107
110
.
24.
Lopomo
,
N.
,
Zaffagnini
,
S.
,
Signorelli
,
C.
,
Bignozzi
,
S.
,
Giordano
,
G.
,
Marcheggiani Muccioli
,
G. M.
, and
Visani
,
A.
,
2012
, “
An Original Clinical Methodology for Non-Invasive Assessment of Pivot-Shift Test
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
12
), pp.
1323
1328
.
25.
Chen
,
W.-J.
,
Zhao
,
M.-Y.
,
Zhou
,
J.-P.
, and
Qin
,
Y.-F.
,
2002
, “
A 2T-2R, 4-DOF Parallel Manipulator
,”
ASME
Paper No. DETC2002/MECH-34303.
26.
Fan
,
C.
,
Liu
,
H.
,
Yuan
,
G.
, and
Zhang
,
Y.
,
2011
, “
A Novel 2T2R 4-DOF Parallel Manipulator
,”
IEEE Fourth International Symposium on Knowledge Acquisition and Modeling
(
KAM
), Sanya, China, Oct. 8–9, pp.
5
8
.
27.
Fan
,
C.
,
Liu
,
H.
, and
Zhang
,
Y.
,
2013
, “
Type Synthesis of 2T2R, 1T2R and 2R Parallel Mechanisms
,”
Mech. Mach. Theory
,
61
, pp.
184
190
.
28.
Xie
,
F.
,
Li
,
T.
, and
Liu
,
X.
,
2013
, “
Type Synthesis of 4-DOF Parallel Kinematic Mechanisms Based on Grassmann Line Geometry and Atlas Method
,”
Chin. J. Mech. Eng.
,
26
(
6
), pp.
1073
1081
.
29.
Ghaffari
,
H.
,
Payeganeh
,
G.
, and
Arbabtafti
,
M.
,
2014
, “
Kinematic Design of a Novel 4-DOF Parallel Mechanism for Turbine Blade Machining
,”
Int. J. Adv. Manuf. Technol.
,
74
(
5–8
), pp.
729
739
.
30.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
,
Umer
,
R.
, and
Seneviratne
,
L.
,
2015
, “
Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041022
.
31.
Merlet
,
J.-P.
,
2000
,
Parallel Robots
, Vol.
128
,
Kluwer Academic Publishers
,
Norwell, MA
.
32.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
33.
Paul
,
R. P.
,
1981
,
Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators
, MIT Press, Cambridge, MA.
34.
Zhao
,
J.-S.
,
Zhou
,
K.
, and
Feng
,
Z.-J.
,
2004
, “
A Theory of Degrees of Freedom for Mechanisms
,”
Mech. Mach. Theory
,
39
(
6
), pp.
621
643
.
35.
Wang
,
L.
,
Xu
,
H.
, and
Guan
,
L.
,
2015
, “
Mobility Analysis of Parallel Mechanisms Based on Screw Theory and Mechanism Topology
,”
Adv. Mech. Eng.
,
7
(
11
), pp. 1–13.
36.
Hunt
,
K. H.
,
1986
, “
Special Configurations of Robot-Arms Via Screw Theory
,”
Robotica
,
4
(
3
), pp.
171
179
.
37.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
38.
Merlet
,
J.-P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Rob. Res.
,
8
(
5
), pp.
45
56
.
39.
Gibson
,
C.
, and
Hunt
,
K.
,
1990
, “
Geometry of Screw Systems—1: Screws: Genesis and Geometry
,”
Mech. Machine Theory
,
25
(
1
), pp.
1
10
.
40.
Zlatanov
,
D.
,
Fenton
,
R.
, and
Benhabib
,
B.
,
1998
, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
,
33
(
6
), pp.
743
760
.
41.
Andriacchi
,
T. P.
,
Natarajan
,
R.
, and
Hurwitz
,
D.
,
1997
, “
Musculoskeletal Dynamics, Locomotion, and Clinical Applications
,”
Basic Orthopedic Biomechanics & Mechano Biology
, Lippincott Willians & Wikins, Philadelphia, PA, pp. 91–121.
You do not currently have access to this content.