A hierarchical approach for the lightweight design of a 3-SPR parallel mechanism (PM) is presented in this paper. The criterion to match the rigidities of the limb body and those of the joints is proposed; meanwhile, the constraints in terms of technological processes and the dimensional correlations among components and joints, etc., are considered in this approach. Based on these considerations, the design flow is developed by maximizing the lower-order natural frequencies as well as by minimizing the weights of the limbs/subassemblies subject to specified rigidity constraints attributed to them. The proposed approach simultaneously enables the PM to achieve both high static rigidities and high dynamic behaviors.

References

References
1.
Tsai
,
L. W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley-Interscience Publication
,
New York
.
2.
Huang
,
T.
,
Li
,
M.
,
Wu
,
M. L.
,
Mei
,
J. P.
,
Zhao
,
X. M.
, and
Hu
,
S. J.
,
2005
, “
The Criteria for Conceptual Design of Reconfigurable PKM Modules—Theory and Application
,”
Chin. J. Mech. Eng.
,
41
(
8
), pp.
36
41
.
3.
Olazagoitia
,
J. L.
, and
Wyatt
,
S.
,
2007
, “
New PKM Tricept T9000 and Its Application to Flexible Manufacturing at Aerospace Industry
,”
SAE
Paper No. 2007-01-3820.
4.
Tonshoff
,
H. K.
,
Grendel
,
H.
, and
Kaak
,
R.
,
1999
, “
Structure and Characteristics of the Hybrid Manipulator George V
,”
Parallel Kinematic Machines
,
C. R.
Boer
,
L.
Molinari-Tosatti
, and
K. S.
Smith
, eds.,
Springer-Verlag
,
London
, pp.
365
376
.
5.
Zielinski
,
C.
,
Mianowski
,
K.
,
Nazarczuk
,
K.
, and
Szynkiewicz
,
W.
,
2003
, “
A Prototype Robot for Polishing and Milling Large Objects
,”
Ind. Rob.
,
30
(
1
), pp.
67
76
.
6.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Rob. Comput. Integr. Manuf.
,
27
(
1
), pp.
186
193
.
7.
Cao
,
W. A.
,
Ding
,
H. F.
, and
Yang
,
D. H.
,
2016
, “
A Method for Compliance Modeling of Five Degree-of-Freedom Overconstrained Parallel Robotic Mechanisms With 3T2R Output Motion
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011011
.
8.
Ceccarelli
,
M.
, and
Carbone
,
G. A.
,
2002
, “
Stiffness Analysis for CaPaMan (Cassino Parallel Manipulator)
,”
Mech. Mach. Theory
,
37
(
5
), pp.
427
439
.
9.
Huang
,
T.
,
Mei
,
J. P.
,
Zhao
,
X. Y.
,
Zhou
,
L. H.
,
Zhang
,
D. W.
,
Zeng
,
Z. P.
, and
Whitehouse
,
D. J.
,
2001
, “
Stiffness Estimation of a Tripod-Based Parallel Kinematic Machine
,”
IEEE International Conference on Robotics & Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
3280
3285
.
10.
Lian
,
B. B.
,
Sun
,
T.
,
Song
,
Y. M.
,
Jin
,
Y.
, and
Price
,
M.
,
2015
, “
Stiffness Analysis and Experiment of a Novel 5-DoF Parallel Kinematic Machine Considering Gravitational Effects
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
82
96
.
11.
Rezaei
,
A.
,
Akbarzadeh
,
A.
, and
Akbarzadeh
,
T. M. R.
,
2012
, “
An Investigation on Stiffness of a 3-PSP Spatial Parallel Mechanism With Flexible Moving Platform Using Invariant Form
,”
Mech. Mach. Theory
,
51
, pp.
195
216
.
12.
Li
,
Y. G.
,
Liu
,
H. T.
,
Zhao
,
X. M.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2010
, “
Design of a 3-DOF PKM Module for Large Structural Component Machining
,”
Mech. Mach. Theory
,
45
(
6
), pp.
941
954
.
13.
Portman
, V
. T.
,
2011
, “
Stiffness Evaluation of Machines and Robots: Minimum Collinear Stiffness Value Approach
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011015
.
14.
Zhou
,
Z. L.
,
Xi
,
J.
, and
Mechefske
,
C. K.
,
2006
, “
Modeling of a Fully Flexible 3PRS Manipulator for Vibration Analysis
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
403
412
.
15.
Piras
,
G.
,
Cleghorn
,
W. L.
, and
Mills
,
J. K.
,
2005
, “
Dynamic Finite-Element Analysis of a Planar High-Speed, High-Precision Parallel Manipulator With Flexible Links
,”
Mech. Mach. Theory
,
40
(
7
), pp.
849
862
.
16.
Zhang
,
X. P.
,
Mills
,
J. K.
, and
Cleghorn
,
W. L.
,
2007
, “
Dynamic Modeling and Experimental Validation of a 3-PRR Parallel Manipulator With Flexible Intermediate Links
,”
J. Int. Rob. Syst.
,
50
(
4
), pp.
323
340
.
17.
Menon
,
C.
,
Vertechy
,
R.
,
Markot
,
M. C.
, and
Parenti-Castelli
,
V.
,
2009
, “
Geometrical Optimization of Parallel Mechanisms Based on Natural Frequency Evaluation: Application to a Spherical Mechanism for Future Space Applications
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
12
24
.
18.
Zhao
,
Y. J.
,
Gao
,
F.
, and
Dong
,
X. J.
,
2011
, “
Dynamics Analysis and Characteristics of the 8-PSS Flexible Redundant Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
27
(
5
), pp.
918
928
.
19.
Wu
,
J.
,
Wang
,
L. P.
, and
Guan
,
L. W.
,
2013
, “
A Study on the Effect of Structure Parameters on the Dynamic Characteristics of a PRRRP Parallel Manipulator
,”
Nonlinear Dyn.
,
74
(
1–2
), pp.
227
235
.
20.
Zhang
,
J.
,
Dai
,
J. S.
, and
Huang
,
T.
,
2015
, “
Characteristic Equation-Based Dynamic Analysis of a Three-Revolute Prismatic Spherical Parallel Kinematic Machine
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021017
.
21.
Zhang
,
S.
,
Zhang
,
B. S.
,
Wei
,
H. H.
,
Wei
,
M. H.
, and
Fan
,
L. Q.
,
2014
,
Innovation and Design of Machine Tool Product
,
Southeast University Press
,
Nanjing, China
, pp.
28
56
.
22.
Zhao
,
L.
,
Chen
,
W. C.
,
Ma
,
J.
, and
Yang
,
Y.
,
2008
, “
Structural Bionic Design and Experimental Verification of a Machine Tool Column
,”
J. Bionic Eng.
,
5
, pp.
46
52
.
23.
Panchal
,
D. M.
,
2010
, “
Topology Optimization of Machine Column for the Horizontal Machining Center
,” Master thesis, University of Duisburg-Essen, Duisburg, Germany.
24.
Kroll
,
L.
,
Blau
,
P.
,
Wabner
,
M.
,
Frieß
,
U.
,
Eulitz
,
J.
, and
Klärner
,
M.
,
2011
, “
Lightweight Components for Energy-Efficient Machine Tools
,”
CIRP J. Manuf. Sci. Technol.
,
4
(
2
), pp.
148
160
.
25.
Zulaika
,
J. J.
,
Campa
,
F. J.
, and
Lacalle
,
L. N.
,
2011
, “
An Integrated Process–Machine Approach for Designing Productive and Lightweight Milling Machines
,”
Int. J. Mach. Tools Manuf.
,
51
, pp.
591
604
.
26.
Tambolia
,
K.
,
Georgeb
,
P. M.
, and
Sanghvia
,
R.
,
2014
, “
Optimization of Steel Box Column for a Pillar-Type Drilling Machine Using Particle Swarm Optimization
,”
Procedia Technol.
,
14
, pp.
473
479
.
27.
Wang
,
M. X.
,
Liu
,
H. T.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2015
, “
Compliance Analysis of a 3-SPR Parallel Mechanism With Consideration of Gravity
,”
Mech. Mach. Theory
,
84
, pp.
99
112
.
28.
Huang
,
T.
,
Liu
,
H. T.
, and
Chetwynd
,
D. G.
,
2011
, “
Generalized Jacobian Analysis of Lower Mobility Manipulators
,”
Mech. Mach. Theory
,
46
(
5
), pp.
831
844
.
29.
Byeng
,
D. Y.
, and
Kyung
,
K. C.
,
2004
, “
A New Response Surface Methodology for Reliability-Based Design Optimization
,”
Comput. Struct.
,
82
(2–3), pp.
241
256
.
30.
Wang
,
M. X.
,
Liu
,
H. T.
, and
Huang
,
T.
,
2017
, “
Kinematics Performance Evaluation of a 3-SPR Parallel Manipulator
,”
Chin. J. Mech. Eng.
,
53
(
5
), pp.
108
115
.
31.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
2006
,
Response Surface Methodology: Process and Product in Optimization Using Designed Experiments
,
Wiley
,
New York
.
32.
Censor
,
Y.
,
1977
, “
Pareto Optimality in Multi-Objective Problems
,”
Appl. Math. Optim.
,
4
(
1
), pp.
41
59
.
You do not currently have access to this content.