We report some recent advances in kinematics and singularity analysis of the mirror-symmetric N-UU parallel wrists using symmetric space theory. We show that both the finite displacement and infinitesimal singularity kinematics of a N-UU wrist are governed by the mirror symmetry property and half-angle property of the underlying motion manifold, which is a symmetric submanifold of the special Euclidean group SE(3). Our result is stronger than and may be considered a closure of Hunt's argument for instantaneous mirror symmetry in his pioneering exposition of constant velocity shaft couplings. Moreover, we show that the wrist can, to some extent, be treated as a spherical mechanism, even though dependent translation exists, and the singularity-free workspace of a N-UU wrist may be analytically derived. This leads to a straightforward optimal design for maximal singularity-free workspace.

References

References
1.
Murray
,
R. M.
,
Li
,
Z.
,
Sastry
,
S. S.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
2.
Wu
,
Y.
,
Löwe
,
H.
,
Carricato
,
M.
, and
Li
,
Z.
,
2016
, “
Inversion Symmetry of the Euclidean Group: Theory and Application to Robot Kinematics
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
312
326
.
3.
Hunt
,
K.
,
1973
, “
Constant-Velocity Shaft Couplings: A General Theory
,”
J. Eng. Ind.
,
95
(
2
), pp.
455
464
.
4.
Carricato
,
M.
,
2009
, “
Decoupled and Homokinetic Transmission of Rotational Motion Via Constant-Velocity Joints in Closed-Chain Orientational Manipulators
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041008
.
5.
Wu
,
Y.
,
Li
,
Z.
, and
Shi
,
J.
,
2010
, “
Geometric Properties of Zero-Torsion Parallel Kinematics Machines
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
2307
2312
.
6.
Bonev
,
I. A.
, and
Ryu
,
J.
,
2001
, “
A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators
,”
Mech. Mach. Theory
,
36
(
1
), pp.
15
28
.
7.
Bonev
,
I.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
,
2002
, “
Advantages of the Modified Euler Angles in the Design and Control of PKMs
,”
Parallel Kinematic Machines International Conference
, Chemnitz, Germany, Apr. 23–25, pp.
171
188
.
8.
Culver
,
I. H.
,
1969
, “
Constant Velocity Universal Joint
,” Southwestern Ind. Inc., Rancho Dominguez, CA, U.S. Patent No.
3,477,249
.https://www.google.com/patents/US3477249
9.
Rosheim
,
M. E.
, and
Sauter
,
G. F.
,
2002
, “
New High-Angulation Omni-Directional Sensor Mount
,”
International Symposium on Optical Science and Technology
, Seattle, WA, July 7–11, pp.
163
174
.
10.
Sone
,
K.
,
Isobe
,
H.
, and
Yamada
,
K.
,
2004
, “
High Angle Active Link
,”
NTN Technical Review
,
71
, pp.
70
73
.http://www.ntnglobal.com/en/products/review/pdf/NTN_TR71_en_P070.pdf
11.
Kong
,
X.
,
Yu
,
J.
, and
Li
,
D.
,
2016
, “
Reconfiguration Analysis of a Two Degrees-of-Freedom 3-4R Parallel Manipulator With Planar Base and Platform
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011019
.
12.
Löwe
,
H.
,
Wu
,
Y.
, and
Carricato
,
M.
,
2016
, “
Symmetric Subspaces of SE(3)
,”
Adv. Geom.
,
16
(
3
), pp.
381
388
.
13.
Wu
,
Y.
, and
Carricato
,
M.
,
2017
, “
Identification and Geometric Characterization of Lie Triple Screw Systems and Their Exponential Images
,”
Mech. Mach. Theory
,
107
, pp.
305
323
.
14.
Wu
,
Y.
,
Müller
,
A.
, and
Carricato
,
M.
,
2016
, “
The 2D Orientation Interpolation Problem: A Symmetric Space Approach
,”
Advances in Robot Kinematics
,
Springer
,
Cham, Switzerland
, pp.
293
302
.
15.
Wu
,
Y.
, and
Carricato
,
M.
,
2018
, “
Design of a Novel 3-DoF Serial-Parallel Robotic Wrist: A Symmetric Space Approach
,”
Robotics Research
, vol 2, A. Bicchi and W. Burgard, Eds., Springer, Cham, Switzerland, pp.
389
404
.
16.
Sofka
,
J.
,
Skormin
,
V.
,
Nikulin
,
V.
, and
Nicholson
,
D.
,
2006
, “
Omni-Wrist III-a New Generation of Pointing Devices—Part I: Laser Beam Steering Devices-Mathematical Modeling
,”
IEEE Trans. Aerosp. Electron. Syst.
,
42
(
2
), pp.
718
725
.
17.
Yu
,
J.
,
Dong
,
X.
,
Pei
,
X.
, and
Kong
,
X.
,
2012
, “
Mobility and Singularity Analysis of a Class of Two Degrees of Freedom Rotational Parallel Mechanisms Using a Visual Graphic Approach
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041006
.
18.
Wu
,
K.
,
Yu
,
J.
,
Zong
,
G.
, and
Kong
,
X.
,
2014
, “
A Family of Rotational Parallel Manipulators With Equal-Diameter Spherical Pure Rotation
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011008
.
19.
Kong
,
X.
, and
Yu
,
J.
,
2015
, “
Type Synthesis of Two-Degrees-of-Freedom 3-4R Parallel Mechanisms With Both Spherical Translation Mode and Sphere-on-Sphere Rolling Mode
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041018
.
20.
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2005
, “
Singularity Loci of Spherical Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
2957
2962
.
21.
Briot
,
S.
, and
Bonev
,
I. A.
,
2008
, “
Singularity Analysis of Zero-Torsion Parallel Mechanisms
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sept. 22–26, pp.
1952
1957
.
22.
Ben-Horin
,
P.
, and
Shoham
,
M.
,
2009
, “
Application of Grassmann–Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities
,”
Int. J. Rob. Res.
,
28
(
1
), pp.
127
141
.
23.
Kanaan
,
D.
,
Wenger
,
P.
,
Caro
,
S.
, and
Chablat
,
D.
,
2009
, “
Singularity Analysis of Lower Mobility Parallel Manipulators Using Grassmann–Cayley Algebra
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
995
1004
.
24.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
25.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
,
2007
, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DOF Parallel Manipulators
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
625
649
.
26.
Selig
,
J.
,
2018
, “
Some Mobile Overconstrained Parallel Mechanisms
,”
Advances in Robot Kinematics
, Springer, Cham, Switzerland, pp.
139
147
.
27.
Conconi
,
M.
, and
Carricato
,
M.
,
2009
, “
A New Assessment of Singularities of Parallel Kinematic Chains
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
757
770
.
28.
Wu
,
Y.
, and
Carricato
,
M.
,
2017
, “
Optimal Design of N-UU Parallel Mechanisms
,”
Computational Kinematics
, Springer, Cham, Switzerland, pp.
394
402
.
29.
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2001
, “
Singularity Loci of Planar Parallel Manipulators With Revolute Joints
,”
Second Workshop on Computational Kinematics
, Seoul, South Korea, May 20–22, pp.
20
22
.http://etsmtl.ca/Professeurs/ibonev/documents/pdf/CK2001.pdf
30.
Merlet
,
J.-P.
,
2012
,
Parallel Robots
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
31.
Voglewede
,
P. A.
, and
Ebert-Uphoff
,
I.
,
2005
, “
Overarching Framework for Measuring Closeness to Singularities of Parallel Manipulators
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1037
1045
.
32.
Pottmann
,
H.
,
Peternell
,
M.
, and
Ravani
,
B.
,
1999
, “
An Introduction to Line Geometry With Applications
,”
Comput.-Aided Des.
,
31
(
1
), pp.
3
16
.
You do not currently have access to this content.