Parallel robots present singular configurations that divide the operational workspace into several aspects. It was proven that type 2 and leg passive joint twist system (LPJTS) singularities can be crossed with a trajectory respecting a given dynamic criterion. However, the practical implementation of a controller able to track such trajectories is up to now limited to restrictive cases of type 2 singularities crossing. Analyzing the structure of the inverse dynamic model, this paper proposes a global solution allowing the tracking of trajectories respecting the general criterion for any singularity that leads to potential issues of dynamic model degeneracy. The tracking is operated in the robot joint space. Experimental results on a five-bar mechanism showed the controller ability to successfully cross type 2 singularities.

References

References
1.
Merlet
,
J.
,
2006
,
Parallel Robots
,
Springer
,
Dordrecht, The Netherlands
.
2.
Zlatanov
,
D.
,
Fenton
,
R.
, and
Benhabib
,
B.
,
1994
, “
Singularity Analysis of Mechanisms and Robots Via a Velocity-Equation Model of the Instantaneous Kinematics
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Diego, CA, May 8–13, pp.
986
991
.
3.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11–15, pp.
496
502
.
4.
Conconi
,
M.
, and
Carricato
,
M.
,
2009
, “
A New Assessment of Singularities of Parallel Kinematic Chains
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
757
770
.
5.
Briot
,
S.
,
Pagis
,
G.
,
Bouton
,
N.
, and
Martinet
,
P.
,
2016
, “
Degeneracy Conditions of the Dynamic Model of Parallel Robots
,”
Multibody Syst. Dyn.
,
37
(4), pp. 371–412.
6.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
7.
Liu
,
X.-J.
,
Wang
,
J.
, and
Pritschow
,
G.
,
2006
, “
Kinematics, Singularity and Workspace of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
2
), pp.
145
169
.
8.
Gogu
,
G.
,
2004
, “
Structural Synthesis of Fully-Isotropic Parallel Robots Via Theory of Linear Transformations and Evolutionary Morphology
,”
Eur. J. Mech. A/Solids
,
23
(
6
), pp.
1021
1039
.
9.
Briot
,
S.
, and
Arakelian
,
V.
,
2010
, “
On the Dynamic Properties of Rigid-Link Flexible-Joint Parallel Manipulators in the Presence of Type 2 Singularities
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
021004
.
10.
Nahon
,
M. A.
, and
Angeles
,
J.
,
1989
, “
Force Optimization in Redundantly-Actuated Closed Kinematic Chains
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Scottsdale, AZ, May 14–19, pp.
951
956
.
11.
Kurtz
,
R.
, and
Hayward
,
V.
,
1992
, “
Multiple-Goal Kinematic Optimization of a Parallel Spherical Mechanism With Actuator Redundancy
,”
IEEE Trans. Rob. Autom.
,
8
(
5
), pp.
644
651
.
12.
Rakotomanga
,
N.
,
Chablat
,
D.
, and
Caro
,
S.
,
2008
,
Kinetostatic Performance of a Planar Parallel Mechanism With Variable Actuation
,
Springer
, Dordrecht, The Netherlands.
13.
Arakelian
,
V.
,
Briot
,
S.
, and
Glazunov
,
V.
,
2008
, “
Increase of Singularity-Free Zones in the Workspace of Parallel Manipulators Using Mechanisms of Variable Structure
,”
Mech. Mach. Theory
,
43
(
9
), pp.
1129
1140
.
14.
Campos
,
L.
,
Bourbonnais
,
F.
,
Bonev
,
I. A.
, and
Bigras
,
P.
,
2010
, “
Development of a Five-Bar Parallel Robot With Large Workspace
,”
ASME
Paper No. DETC2010-28962.
15.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2008
, “
Non-Singular Assembly-Mode Changing Motions for 3-RPR Parallel Manipulators
,”
Mech. Mach. Theory
,
43
(
4
), pp.
480
490
.
16.
Ider
,
S. K.
,
2005
, “
Inverse Dynamics of Parallel Manipulators in the Presence of Drive Singularities
,”
Mech. Mach. Theory
,
40
(
1
), pp.
33
44
.
17.
Pagis
,
G.
,
Bouton
,
N.
,
Briot
,
S.
, and
Martinet
,
P.
,
2015
, “
Enlarging Parallel Robot Workspace Through Type-2 Singularity Crossing
,”
Control Eng. Pract.
,
39
, pp.
1
11
.
18.
Six
,
D.
,
Briot
,
S.
,
Chriette
,
A.
, and
Martinet
,
P.
,
2016
, “
A Controller for Avoiding Dynamic Model Degeneracy of Parallel Robots During Type 2 Singularity Crossing
,”
New Trends in Mechanism and Machine Science
(Mechanisms and Machine Science), P. Wenger and P. Flores, eds., Springer, Cham, Switzerland, pp.
589
597
.
19.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling, Identification and Control of Robots
,
Kogan Page Science
,
London
.
20.
Briot
,
S.
, and
Khalil
,
W.
,
2015
,
Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements
,
Springer
,
Dordrecht, The Netherlands
.
21.
Briot
,
S.
, and
Arakelian
,
V.
,
2008
, “
Optimal Force Generation in Parallel Manipulators for Passing Through the Singular Positions
,”
Int. J. Rob. Res.
,
27
(
8
), pp.
967
983
.
22.
Samson
,
C.
,
1987
, “
Robust Control of a Class of Non-Linear Systems and Applications to Robotics
,”
Int. J. Adapt. Control Signal Process.
,
1
(
1
), pp.
49
68
.
23.
Merlet
,
J. P.
,
2004
, “
Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
221
235
.
24.
Özgür
,
E.
,
Dahmouche
,
R.
,
Andreff
,
N.
, and
Martinet
,
P.
,
2014
, “
A Vision-Based Generic Dynamic Model of PKMs and Its Experimental Validation on the Quattro Parallel Robot
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Besacon, France, July 8–11, pp.
937
942
.
25.
Paccot
,
F.
,
Andreff
,
N.
, and
Martinet
,
P.
,
2009
, “
A Review on the Dynamic Control of Parallel Kinematic Machines: Theory and Experiments
,”
Int. J. Rob. Res.
,
28
(
3
), pp.
395
416
.
26.
Gautier
,
M.
,
Khalil
,
W.
, and
Restrepo
,
P. P.
,
1995
, “
Identification of the Dynamic Parameters of a Closed Loop Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Nagoya, Japan, May 21–27, pp.
3045
3050
.
27.
Renaud
,
P.
,
Vivas
,
A.
,
Andreff
,
N.
,
Poignet
,
P.
,
Martinet
,
P.
,
Pierrot
,
F.
, and
Company
,
O.
,
2006
, “
Kinematic and Dynamic Identification of Parallel Mechanisms
,”
Control Eng. Pract.
,
14
(
9
), pp.
1099
1109
.
You do not currently have access to this content.